Advertisement

Qualitative Theory of Dynamical Systems

, Volume 18, Issue 3, pp 1225–1235 | Cite as

On Non-ergodic Volterra Cubic Stochastic Operators

  • Farrukh MukhamedovEmail author
  • Chin Hee Pah
  • Azizi Rosli
Article
  • 49 Downloads

Abstract

Let \(S^{m-1}\) be the simplex in \({{\mathbb {R}}}^m\), and \(V:S^{m-1}\rightarrow S^{m-1}\) be a nonlinear mapping then this operator satisfies an ergodic theorem if the limit
$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{1}{n}\sum _{k=1}^n V^k(x) \end{aligned}$$
exists for every \(x\in S^{m-1}\). It is a well known fact that this ergodicity may fail for Volterra quadratic operators, so it is natural to characterize all non-ergodic operators. However, there is an ongoing problem even in the low dimensional simplexes. In this paper, we solve the mentioned problem within Volterra cubic stochastic operators acting on two-dimensional simplex.

Keywords

Cubic stochastic operator Volterra operator Non-ergodic Dynamics 

Notes

Acknowledgements

The first author (FM) thanks the research grant by the UAEU, No. 31S259.

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Akin, E., Losert, V.: Evolutionary dynamics of zero-sum games. J. Math. Biol. 20, 231–258 (1984)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bernstein, S.N.: Solution of a mathematical problem connected with the theory of heredity. Ann. Math. Stat. 13, 53–61 (1942)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Westview Press, Boulder (2003)zbMATHGoogle Scholar
  4. 4.
    Elaydi, S.N.: Discrete chaos. Chapman & Hall/CRC, Boca Raton (2000)zbMATHGoogle Scholar
  5. 5.
    Freedman, H.I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–231 (1984)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ganikhodjaev, N.N., Ganikhodjaev, R.N., Jamilov, U.U.: Quadratic stochastic operators and zero-sum game dynamics. Ergod. Theory Dyn. Syst. 35, 1443–1473 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ganikhodzhaev, N.N., Zanin, D.: On a necessary condition for the ergodicity of quadratic operators defined on the two-dimensional simplex. Russ. Math. Surv. 59, 161–162 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ganikhodzhaev, R.N., Mukhamedov, F.M., Rozikov, U.A.: Quadratic stochastic operators and processes: results and open problems, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14, 279–335 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jamilov, U., Khamraev, A., Ladra, M.: On a Volterra cubic stochastic operator. Bull. Math. Biol. 80, 319–334 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jamilov, U., Ladra, M.: Non-ergodicity of uniform quadratic stochastic operators. Qual. Theory Dyn. Syst. 15, 257–271 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Khamraev, A.Y.: On cubic operators of Volterra type (Russian). Uzbek. Mat. Zh. 2004(2), 79–84 (2004)MathSciNetGoogle Scholar
  12. 12.
    Khamraev, A.Y.: A condition for the uniqueness of a fixed point for cubic operators (Russian). Uzbek. Mat. Zh. 2005(1), 79–87 (2005)MathSciNetGoogle Scholar
  13. 13.
    Khamraev, A.Y.: On a Volterra-type cubic operator (Russian). Uzbek. Mat. Zh. 2009(3), 65–71 (2009)MathSciNetGoogle Scholar
  14. 14.
    Lyubich, Y.I.: Mathematical Structures in Population Genetics. Springer-Verlag, Berlin (1992)CrossRefGoogle Scholar
  15. 15.
    Mukhamedov, F., Embong, A.F.: On \(b\)-bistochastic quadratic stochastic operators. J. Inequal. Appl. 2015, 226 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mukhamedov, F., Embong, A.F.: On non-linear Markov operators: surjectivity vs orthogonal preserving property. Linear Multilinear Algorithm 66, 2183–2190 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mukhamedov, F., Embong, A.F., Rosli, A.: Orthogonal preserving and surjective cubic stochastic operators. Ann. Funct. Anal. 8, 490–501 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mukhamedov, F., Jamilov, U., Pirnapasov, A.: On nonergodic uniform Lotka–Volterra operators. Math. Notes 105, 258–264 (2019)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rozikov, U.A., Khamraev, A.Y.: On cubic operators defined on finite-dimensional simplices. Ukr. Math. J. 56, 1699–1711 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Saburov, M.: A class of nonergodic Lotka–Volterra operators. Math. Notes 97, 759–763 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1960)zbMATHGoogle Scholar
  22. 22.
    Zakharevich, M.I.: On the behaviour of trajectories and the ergodic hypothesis for quadratic mappings of a simplex. Russ. Math. Surv. 33, 265–266 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematical Sciences, College of ScienceThe United Arab Emirates UniversityAl Ain, Abu DhabiUAE
  2. 2.Department of Computational and Theoretical Sciences, Faculty of ScienceIIUMKuantanMalaysia

Personalised recommendations