Intransitive Sectional-Anosov Flows on 3-manifolds

  • S. BautistaEmail author
  • A. M. López
  • H. M. Sánchez


For each \(n\in \mathbb {Z}^+\), we show the existence of Venice masks (i.e. intransitive sectional-Anosov flows with dense periodic orbits, Bautista and Morales in Lectures on sectional-Anosov flows., 2011; Bautista and Morales in Discrete Contin Dyn Syst 19(4): 761–775, 2007; López Barragan and Sánchez in Bull Braz Math Soc N Ser 48(1): 1–18, 2017, Morales and Pacífico in Pac J Math 216(2): 327–342, 2004) containing n equilibria on certain compact 3-manifolds. These examples are characterized because of the maximal invariant set is a finite union of homoclinic classes. Here, the intersection between two different homoclinic classes is contained in the closure of the union of unstable manifolds of the singularities.


Sectional Anosov flow Maximal invariant set Lorenz-like singularity Homoclinic class Venice mask Dense periodic orbits 



  1. 1.
    Afraimovich, V.S., Bykov, V.V., Shilnikov, L.P.: On structurally unstable attracting limit sets of lorenz attractor type. Trudy Moskov. Mat. Obshch. 44(2), 150–212 (1982)MathSciNetGoogle Scholar
  2. 2.
    Arroyo, A., Pujals, E.: Dynamical properties of singular-hyperbolic attractors. Discrete Contin. Dyn. Syst. 19(1), 67–87 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bautista, S.: The geometric lorenz attractor is a homoclinic class. Bol. Mat. (NS) 11(1), 69–78 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bautista, S., Morales, C.A.: Lectures on sectional-Anosov flows (2011). Accessed 2011
  5. 5.
    Bautista, S., Morales, C.A.: On the intersection of sectional-hyperbolic sets. J. Mod. Dyn. 10(1), 1–16 (2016)MathSciNetGoogle Scholar
  6. 6.
    Bautista, S., Morales, C.A., Pacifico, M.J.: On the intersection of homoclinic classes on singular-hyperbolic sets. Discrete Contin. Dyn. Syst. 19(4), 761–775 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bonatti, C., Pumariño, A., Viana, M.: Lorenz attractors with arbitrary expanding dimension. C. R. Acad. Sci. Paris Sér. I Math. 325(8), 883–888 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gähler, S.: Lineare 2-normierte räume. Math. Nachr. 28(1–2), 1–43 (1964)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. l’IHÉS 50(1), 59–72 (1979)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hempel, J.: 3-manifolds. In: Annals of Mathematics Studies, No. 86. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1976)Google Scholar
  11. 11.
    Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant Manifolds, vol. 583. Springer, Berlin (1977)zbMATHGoogle Scholar
  12. 12.
    Kawaguchi, A., Tandai, K.: On areal spaces i. Tensor NS 1, 14–45 (1950)Google Scholar
  13. 13.
    López Barragan, A.M., Sánchez, H.M.S.: Sectional anosov flows: existence of venice masks with two singularities. Bull. Braz. Math. Soc. N. Ser. 48(1), 1–18 (2017)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Metzger, R., Morales, C.A.: Sectional-hyperbolic systems. Ergod. Theory Dyn. Syst. 28(05), 1587–1597 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Morales, C.: Singular-hyperbolic attractors with handlebody basins. J. Dyn. Control Syst. 13(1), 15–24 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Morales, C.A.: Examples of singular-hyperbolic attracting sets. Dyn. Syst. 22(3), 339–349 (2007)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Morales, C.A.: Sectional-Anosov flows. Monatsh. Math. 159(3), 253–260 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Morales, C.A., Pacífico, M.J.: Sufficient conditions for robustness of attractors. Pac. J. Math. 216(2), 327–342 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Morales, C.A., Pacífico, M.J.: A spectral decomposition for singular-hyperbolic sets. Pac. J. Math. 229(1), 223–232 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Morales, C.A., Pacífico, M.J., Pujals, E.R.: Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. Math. 160, 375–432 (2004)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Morales, C.A., Vilches, M.: On 2-riemannian manifolds. SUT J. Math. 46(1), 119–153 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Reis, J.: Infinidade de órbitas periódicas para fluxos seccional anosov. Tese de Doutorado, UFRJ (2011)Google Scholar
  23. 23.
    Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73(6), 747–817 (1967)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Departamento de Matemática, Instituto de Ciências Exatas (ICE)Universidade Federal Rural do Rio de JaneiroSeropédicaBrazil
  3. 3.Departamento de MatemáticasUniversidad CentralBogotáColombia

Personalised recommendations