Qualitative Theory of Dynamical Systems

, Volume 12, Issue 1, pp 115–139 | Cite as

2-D Duffing Oscillator: Elliptic Functions from a Dynamical Systems Point of View

  • Francisco Javier Molero
  • Martín Lara
  • Sebastián Ferrer
  • Francisco Céspedes


K. Meyer has advocated for the study of elliptic functions and integrals from a dynamical systems point of view. Here, we follow his advice and we propose the bidimensional Hamiltonian Duffing oscillator as a model; it allows us to deal with the elliptic integral of third kind directly. Focusing on bounded trajectories we do a detailed analysis of the solutions in the three regions defined by the parameters. In our opinion, for the study of elliptic functions, the model presented here represents an alternative to the pendulum or the free rigid body systems.


Integrable systems Hamiltonian systems Duffing oscillator Jacobi elliptic functions Elliptic integrals Elliptic integral of the third kind 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armitage, J.V., Eberlein, W.F.: Elliptic Functions. LMS 67, Cambridge (2006)Google Scholar
  2. 2.
    Arnold, V.I.: On teaching mathematics. Address at the Palais de Découverte, Paris, 7 March 1997Google Scholar
  3. 3.
    Bates L.: Monodromy in the champagne bottle. Z. Angew Math. Phys. 42(6), 837–847 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bolsinov A.V., Borisov A.V., Mamaev I.S.: Topology and stability of integrable systems. Russ. Math. Surv. 65(2), 259–318 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Born M.: The Mechanics of the Atom. Bell and Sons, London (1927)zbMATHGoogle Scholar
  6. 6.
    Byrd P.F., Friedman M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Berlin (1971)CrossRefzbMATHGoogle Scholar
  7. 7.
    Céspedes, F.: El oscilador de Duffing bidimensional. Tesina Máster, Universidad de Murcia (2011)Google Scholar
  8. 8.
    David D., Holm D.D.: Multiple Lie-Poisson structures, reductions, and geometric phases for the Maxwell-Bloch travelling wave equations. J. Nonlinear Sci. 2, 241–262 (1992)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deprit A.: Free rotation of a rigid body studied in the phase plane. Am. J. Phys. 35, 424–428 (1967)CrossRefGoogle Scholar
  10. 10.
    Deprit A.: The Lissajous transformation. I:Basics. Celest. Mech. Dyn. Astron. 51, 201–225 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fukushima T.: Fast computation of Jacobian elliptic functions and incomplete elliptic integrals for constant values of elliptic parameter and elliptic characteristic. Celest. Mech. Dyn. Astron. 105, 245–260 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fukushima T.: Fast computation of complete elliptic integrals and Jacobian elliptic functions. Celest. Mech. Dyn. Astron. 105, 305–328 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Garnier R.: Sur une classe de systèmes différentiels abéliens déduits de théorie des équatios linéaires. Rend. Circ. Math. Palermo 43(4), 155–191 (1919)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn, and Errata. Academic Press, San Diego (2000)Google Scholar
  15. 15.
    Greenhill A.G.: Applications of Elliptic Functions. Macmillan, London (1982)Google Scholar
  16. 16.
    Gurarie D.: Long-range dynamics of a shallow water triad: renormalization, modulation, and cyclogenesis. J. Atmos. Sci. 60, 693–710 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hille E. : Lectures on Ordinary Differential Equations. Addison-Wesley, Reading (1969)Google Scholar
  18. 18.
    Holm, D.D. Marsden, J.E.: The rotor and the pendulum. In: Donato, E., et al. (eds.) Symplectic Geometry and Mathematical Physics. Progress in Mathematics, vol. 99, pp. 189–203. Birhäuser, Boston (1991)Google Scholar
  19. 19.
    Lantoine, G., Russell, R. P.: Complete closed-form solutions of the Stark problem. Celest. Mech. Dyn. Astron. doi: 10.1007/s10569-010-9331-1
  20. 20.
    Lawden D.F.: Elliptic Functions and Applications. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  21. 21.
    MarsdenJ.E. Ratiu T.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, Berlin (1999)CrossRefGoogle Scholar
  22. 22.
    McLachlan N.W.: Ordinary Non-linear Differential Equations in Engineering and Physical Sciences, 2nd edn. Clarendon, Oxford (1958)Google Scholar
  23. 23.
    McSwiggen P.D., Meyer K.R.: The evolution of invariant manifolds in Hamiltonian-Hopf bifurcations. J. Differ. Equ. 189, 538–555 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Meyer K.R.: Scaling Hamiltonian systems. SIAM J. Math. Anal. 15, 877–889 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Meyer K.R.: Jacobi elliptic functions from a dynamical systems point of view. Am. Math. Mon. 108, 729–737 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Meyer K.R., Hall G.R.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, vol 90. Springer, New York (1992)Google Scholar
  27. 27.
    Meyer K.R., Hall G.R., Offin D.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2nd edn, vol. 90, pp. 243–250. Springer, New York (2009)Google Scholar
  28. 28.
    Nguyen T.Z.: A note on focus–focus singularities. Differ. Geom. Appl. 7, 123–130 (1997)CrossRefzbMATHGoogle Scholar
  29. 29.
    Radulescu, V.: An example with periodic orbits. The Mathematical Association of America, p. 260, Problem # 11073 (2004)Google Scholar
  30. 30.
    Schaub, H., Junkins, J.L: Analytical Mechanics of Space Systems, 2nd edn. AIAA Education Series, Reston (2009)Google Scholar
  31. 31.
    Tricomi, F.G.: Equazioni Differenziale. Einaudi, Torino (1965)Google Scholar
  32. 32.
    Van der Meer, J.C.: The Hamiltonian Hopf Bifurcation. Lectures Notes in Mathematics, vol. 1160. Springer, Berlin (1985)Google Scholar
  33. 33.
    Van der Meer, J.C.: On nonlinearly coupled Duffing equations. A note on problem 11073. The AMM 111 (2004, unpublished)Google Scholar
  34. 34.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927)Google Scholar
  35. 35.
    Wojciechowski S.: On a Lax-type representation and separability of the anisotropic harmonic oscillator in a radial quartic potential.. Lett. Nuovo Cimento 41, 361–369 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Francisco Javier Molero
    • 1
  • Martín Lara
    • 1
  • Sebastián Ferrer
    • 1
  • Francisco Céspedes
    • 1
  1. 1.Departamento de Matemática AplicadaUniversidad de MurciaEspinardo, MurciaSpain

Personalised recommendations