Qualitative Theory of Dynamical Systems

, Volume 11, Issue 1, pp 39–60

Transitive Lie Algebras of Vector Fields: An Overview

Open Access


This overview paper is intended as a quick introduction to Lie algebras of vector fields. Originally introduced in the late nineteenth century by Sophus Lie to capture symmetries of ordinary differential equations, these algebras, or infinitesimal groups, are a recurring theme in twentieth-century research on Lie algebras. I will focus on so-called transitive or even primitive Lie algebras, and explain their theory due to Lie, Morozov, Dynkin, Guillemin, Sternberg, Blattner, and others. This paper gives just one, subjective overview of the subject, without trying to be exhaustive.


  1. 1.
    Blattner R.J.: Induced and produced representations of Lie algebras. Trans. Am. Math. Soc. 144, 457–474 (1969)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brion, M.: Variétés sphériques. Notes of the S.M.F. session Opérations Hamiltoniennes et opérations de groupes algébriques. Grenoble 1997. http://www-fourier.ujf-grenoble.fr/~mbrion/notes.html
  3. 3.
    Brion M., Luna D., Vust T.: Espaces homogènes sphériques. Invent. Math. 84, 617–632 (1986)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Draisma, J.: \({{\tt blattner}}\), an implementation of the realisation formula. \({{\tt GAP}}\) -code: http://www.win.tue.nl/~jdraisma/index.php?location=programs
  5. 5.
    Draisma, J.: \({{\tt maximal\_subalgebras}}\), an implementation of Dynkin’s classification. \({{\tt LiE}}\) -code: http://www.win.tue.nl/~jdraisma/index.php?location=programs
  6. 6.
    Draisma J.: Recognizing the symmetry type of o.d.e.’s. J. Pure Appl. Algebra 164(1–2), 109–128 (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Draisma, J.: On a conjecture of Sophus Lie. In: Differential Equations and the Stokes Phenomenon. Proceedings of a Workshop held at Groningen University from May 28–30, 2001. World Scientific, Singapore (2002)Google Scholar
  8. 8.
    Dynkin E.B.: Maximal subgroups of the classical groups. Am. Math. Soc. Transl. II. Ser. 6, 245–378 (1957)MATHGoogle Scholar
  9. 9.
    Dynkin E.B.: Semisimple subalgebras of semisimple Lie algebras. Am. Math. Soc. Transl. II. Ser. 6, 111–244 (1957)MATHGoogle Scholar
  10. 10.
    The GAP Group.: GAP—Groups, Algorithms, and Programming, Version 4.3. http://www.gap-system.org (2002)
  11. 11.
    González-López A., Kamran N., Olver P.J.: Lie algebras of first order differential operators in two complex variables. Am. J. Math. 114(6), 1163–1185 (1992)MATHCrossRefGoogle Scholar
  12. 12.
    González-López A., Kamran N., Olver P.J.: Lie algebras of vector fields in the real plane. Proc. Lond. Math. Soc. III. Ser. 64(2), 339–368 (1992)MATHCrossRefGoogle Scholar
  13. 13.
    Guillemin V.W.: Infinite dimensional primitive Lie algebras. J. Differ. Geom. 4, 257–282 (1970)MathSciNetMATHGoogle Scholar
  14. 14.
    Guillemin V.W., Sternberg S.: An algebraic model of transitive differential geometry. Bull. Am. Math. Soc. 70, 16–47 (1964)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Helgason, S.: Differential geometry and symmetric spaces. In: Pure and Applied Mathematics, vol. XII. Academic Press, New York-London (1962)Google Scholar
  16. 16.
    Jacobson, N.: Lie Algebras. Dover, New York (1969, reprint)Google Scholar
  17. 17.
    Karpelevich, F.I.: Über nicht-halbeinfache maximale Teilalgebren halbeinfacher Liescher Algebren. Dokl. Akad. Nauk SSSR 76, 775–778 (1951)MATHGoogle Scholar
  18. 18.
    van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: LiE: A Package for Lie Group Computations. Amsterdam (1992). http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/
  19. 19.
    Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Bearbeitet und herausgegeben von G. Scheffers. B.G. Teubner, Leipzig (1891)Google Scholar
  20. 20.
    Lie, S.: Gruppenregister. Gesammelte Abhandlungen, vol. 5, pp. 767–773. B.G. Teubner, Leipzig (1924)Google Scholar
  21. 21.
    Lie, S., Engel, F.: Transformationsgruppen, vol. 3. B.G. Teubner, Leipzig (1893)Google Scholar
  22. 22.
    Morozov V.V.: Sur les groupes primitifs. Rec. Math. Moscou n. Ser. 5, 355–390 (1939)MATHGoogle Scholar
  23. 23.
    Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Graduate Texts in Mathematics, vol. 107. Springer, New York (1986)Google Scholar
  24. 24.
    Oudshoorn W.R., van der Put M.: Lie symmetries and differential Galois groups of linear equations. Math. Comput. 71(237), 349–361 (2002)MATHGoogle Scholar
  25. 25.
    Reid G.J.: Algorithms for reducing a system of pdes to standard form, determining the dimension of its solution space and calculating its Taylor series solution. J. Appl. Math. 2(4), 293–318 (1991)MathSciNetMATHGoogle Scholar
  26. 26.
    Reid G.J.: Finding abstract Lie symmetry algebras of differential equations without integrating determining equations. Eur. J. Appl. Math. 2(4), 319–340 (1991)MATHCrossRefGoogle Scholar
  27. 27.
    Richter D.A.: \({{\mathbb Z}}\) -gradations of Lie algebras and infinitesimal generators. J. Lie Theory 9(1), 113–123 (1999)MathSciNetMATHGoogle Scholar
  28. 28.
    Robertz, D.: Janet bases and applications. In: Rosenkranz, M., et al. (eds.) Gröbner Bases in Symbolic Analysis. Radon Series on Computational and Applied Mathematics, vol. 2, pp. 139–168. Walter de Gruyter, Berlin (2007). Based on talks delivered at the special semester on Gröbner bases and related methods, Linz, Austria, May 2006Google Scholar
  29. 29.
    Schwarz, F.: Janet bases for symmetry groups. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications, pp. 221–234. Cambridge University Press (1998)Google Scholar
  30. 30.
    Sharpe, R.W.: Differential geometry: Cartan’s generalization of Klein’s Erlangen program. Graduate Texts in Mathematics, vol. 166. Springer, Berlin (1997)Google Scholar
  31. 31.
    Singer I.M., Sternberg S.: The infinite groups of Lie and Cartan. I: The transitive groups. J. Anal. Math. 15, 1–114 (1965)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Strade, H.: Simple Lie algebras over fields of positive characteristic. I: Structure theory. de Gruyter Expositions in Mathematics, vol. 38. de Gruyter, Berlin (2004)Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands
  2. 2.Centrum voor Wiskunde en InformaticaAmsterdamThe Netherlands

Personalised recommendations