Qualitative Theory of Dynamical Systems

, Volume 11, Issue 1, pp 111–128

Abelian Integrals and Limit Cycles

Article

Abstract

This survey paper is devoted to introducing some basic concepts and methods about the application of Abelian integral to study the number of limit cycles, especially to the weak Hilbert’s 16th problem. We will introduce some recent results in this field.

Keywords

Abelian integral Limit cycle Weak Hilbert’s 16th problem 

Mathematics Subject Classification (2000)

34C07 34C08 37G15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold V.I.: Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields. Funct. Anal. Appl 11, 85–92 (1977)CrossRefGoogle Scholar
  2. 2.
    Arnold V.I.: Ten problems. Adv. Soviet Math. 1, 1–8 (1990)Google Scholar
  3. 3.
    Binyamini G., Novikov D., Yakovenko S.: On the number of zeros of Abelian integrals : a constructive solution of the infinitesimal Hilbert sixteenth problem. Invent. Math. 181, 227–289 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Caubergh M., Dumortier F.: Hopf-Takens bifurcations and centres. J. Diff. Eqs. 202, 1–31 (2004)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Caubergh M., Dumortier F., Roussarie R.: Alien limit cycles near a Hamiltonian 2-saddle cycle. C. R. Math. Acad. Sci. Paris 340, 587–592 (2005)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chen F., Li C., Llibre J., Zhang Z.: A uniform proof on the weak Hilbert’s 16th problem for n = 2. J. Diff. Eqs. 221, 309–342 (2006)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chen, L., Ma, X., Zhang, G., Li, C.: Cyclicity of several quadratic reversible systems with center of genus one. J. Appl. Anal. Comp. (to appear)Google Scholar
  8. 8.
    Chen G., Li C., Liu C., Llibre J.: The cyclicity of period annuli of some classes of reversible quadratic systems. Disc. Contin. Dyn. Sys 16, 157–177 (2006)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Coll B., Li C., Prohens R.: Quadratic perturbations of a class of quadratic reversible systems with two centers. Disc. Contin. Dyn. Sys 24, 699–729 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chow S.-N., Li C., Wang D.: Normal forms and bifurcations of planar vector fields. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  11. 11.
    Chow S.-N., Li C., Yi Y.: The cyclicity of period annulus of degenerate quadratic Hamiltonian system with elliptic segment loop. Erg. Th. Dyn. Syst 22, 1233–1261 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Christopher C., Li C.: Limit cycles of differential equations. Birkhäuser Verlag, Berlin (2007)MATHGoogle Scholar
  13. 13.
    Christopher C.J., Lloyd N.G.: Polynomial systems: a lower bound for the Hilbert numbers. Proc. Royal Soc. Lond. Ser. A 450, 219–224 (1995)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Dulac H.: Sur les cycles limites. Bull. Soc. Math. France 51, 45–188 (1923)MathSciNetMATHGoogle Scholar
  15. 15.
    Dumortier F., Li C.: Perturbations from an elliptic Hamiltonian of degree four: (I) saddle loop and two saddle cycle. J. Diff. Eqs. 176, 114–157 (2001)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Dumortier F., Li C.: Perturbations from an elliptic Hamiltonian of degree four: (II) cuspidal loop. J. Diff. Eqs. 175, 209–243 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Dumortier F., Li C.: Perturbations from an elliptic Hamiltonian of degree four: (III) Global center. J. Diff. Eqs. 188, 473–511 (2003)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Dumortier F., Li C.: Perturbations from an elliptic Hamiltonian of degree four: (IV) figure eight–loop. J. Diff. Eqs. 188, 512–554 (2003)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Dumortier F., Li C., Zhang Z.: Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops. J. Diff. Eqs. 139, 146–193 (1997)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Dumortier F., Roussarie R.: Abelian integrals and limit cycles. J. Diff. Eqs. 227, 116–165 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Écalle, J.: Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Actualitiées Math. Hermann, Paris (1992)Google Scholar
  22. 22.
    Françoise J.-P.: Successive derivatives of a first return map, application to the study of quadratic vector fields. Erg. Th. Dyn. Syst 16, 87–96 (1996)MATHCrossRefGoogle Scholar
  23. 23.
    Gasull, A., Li, C., Torregrosa, J.: A new Chebyshev family with applications to Abel equations. J. Diff. Eqs. (to appear)Google Scholar
  24. 24.
    Gasull A., Li W., Llibre J., Zhang Z.: Chebyshev property of complete elliptic integrals and its application to Abelian integrals. Pacif. J. Math. 202, 341–361 (2002)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Gautier S., Gavrilov L., Iliev I.D.: Perturbations of quadratic centers of genus one. Disc. Contin. Dyn. Sys 25, 511–535 (2009)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Gavrilov L.: Petrov modules and zeros of Abelian integrals. Bull. Sci. Math 122, 571–584 (1998)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Gavrilov L.: The infinitesimal 16th Hilbert problem in the quadratic case. Invent. Math. 143, 449–497 (2001)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Gavrilov L., Iliev I.D.: Second order analysis in polynomially perturbed reversible quadratic Hamiltonian systems. Erg. Th. Dyn. Syst 20, 1671–1686 (2000)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Gavrilov L., Iliev I.D.: Quadratic perturbations of quadratic codimension-four centers. J. Math. Anal. Appl. 357, 69–76 (2009)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Gavrilov L., Iliev I.D.: The displacement map associated to polynomial unfoldings of planar Hamiltonian vector field. Am. J. Math. 127, 1153–1190 (2005)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Grau M., Mañosas F., Villadelprat J.: A Chebyshev criterion for Abelian integrals. Trans. Am. Math. Soc 363, 109–129 (2011)MATHCrossRefGoogle Scholar
  32. 32.
    Han. M., Li, J. Lower bounds for the Hilbert number of polynomial systems (Submitted)Google Scholar
  33. 33.
    Horozov E., Iliev I.D.: On the number of limit cycles in perturbations of quadratic Hamiltonian systems. Proc. Lond. Math. Soc. 69, 198–224 (1994)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Iliev I.D.: High-order Melnikov functions for degenerate cubic Hamiltonians. Adv. Diff. Eqs. 1, 689–708 (1996)MathSciNetMATHGoogle Scholar
  35. 35.
    Iliev I.D.: The cyclicity of the period annulus of the quadratic Hamiltonian triangle. J. Diff. Eqs. 128, 309–326 (1996)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Iliev I.D.: Inhomogeneous Fuchs equations and the limit cycles in a class of near-integrable quadratic systems. Proc. Roy. Soc. Edinb. A 127, 1207–1217 (1997)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Iliev I.D.: Perturbations of quadratic centers. Bull. Sci. Math 122, 107–161 (1998)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Iliev I.D.: The number of limit cycles due to polynomial perturbations of the harmonic oscillator. Math. Proc. Cambridge Philos. Soc. 127(2), 317–322 (1999)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Iliev I.D., Li C., Yu J.: Bifurcation of limit cycles from quadratic non-Hamiltonian systems with two centers and two unbounded heteroclinic loops. Nonlinearity 18, 305–330 (2005)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Iliev I.D., Li C., Yu J.: Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Com. Pure Appl. Anal. 9, 583–610 (2010)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Ilyashenko, Y.S.: Finiteness theorems for limit cycles, Uspekhi Mat. Nauk 45, no.2 (272), 143–200 (1990, Russian). English transl. Russian Math. Surveys 45, 129–203 (1990)Google Scholar
  42. 42.
    Ilyashenko, Y., Yakovenko, S.: Lectures on analytic differential equations, graduate studies in mathematics, 86, Am. Math. Soc., Providence (2008)Google Scholar
  43. 43.
    Khovansky A.G.: Real analytic manifolds with finiteness properties and complex Abelian integrals. Funct. Anal. Appl. 18, 119–128 (1984)CrossRefGoogle Scholar
  44. 44.
    Li B., Zhang Z.: A note of a G.S. Petrov’s result about the weakened 16th Hilbert problem. J. Math. Anal. Appl. 190, 489–516 (1995)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Li C.: Two problems of planar quadratic systems. Scientia Sinica (Series A) 12, 1087–1096 (1982) (in Chinese)Google Scholar
  46. 46.
    Li C., Li W.: Weak Hilbert’s 16th problem and relative reserch. Adv. Math. (China) 39(5), 513–526 (2010)MathSciNetGoogle Scholar
  47. 47.
    Li C., Liu C., Yang J.: A cubic system with thirteen limit cycles. J. Diff. Eqs. 246, 3609–3619 (2009)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Li C., Llibre J.: A unified study on the cyclicity of period annulus of the reversible quadratic Hamiltonian systems. J. Dyn. Diff. Eqs. 16, 271–295 (2004)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Li C., Llibre J.: The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system. Nonlinearity 22, 2971–2979 (2009)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Li C., Llibre J.: Quadratic perturbations of a quadratic reversible Lotka–Volterra system. Qual. Theory Dyn. Syst. 9, 235–249 (2010)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Li C., Zhang Z.-F.: A criterion for determining the monotonicity of ratio of two Abelian integrals. J. Diff. Eqs. 124, 407–424 (1996)MATHCrossRefGoogle Scholar
  52. 52.
    Li C., Zhang Z.-H.: Remarks on 16th weak Hilbert problem for n = 2. Nonlinearity 15, 1975–1992 (2002)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Li J.: Hilbert’s 16th problem and bifurcations of planar vector fields. Inter. J. Bifur. Chaos 13, 47–106 (2003)MATHCrossRefGoogle Scholar
  54. 54.
    Li J., Liu Y.: New results on the study of Z q−equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 9, 167–219 (2010)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Li J.-M.: Limit cycles bifurcated from a reversible quadratic center. Qual. Theory Dyn. Syst. 6, 205–215 (2005)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Li, W.: Normal Form Theory and Its Applications, Science Press, Beijing (2000, in Chinese)Google Scholar
  57. 57.
    Liu, C.: A class of quadratic reversible centers can perturb four limit cycles under quadratic perturbations (Submitted)Google Scholar
  58. 58.
    Liu, C.: Limit cycles bifurcated from some reversible quadratic centers with non-algebraic first integral (2011, preprint)Google Scholar
  59. 59.
    Liang H., Zhao Y.: Quadratic perturbations of a class of quadratic reversible systems with one center. Disc. Contin. Dyn. Syst. 27, 325–335 (2010)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Llibre J.: Averaging theory and limit cycles for quadratic systems. Radovi Math. 11, 1–14 (2002)Google Scholar
  61. 61.
    Llibre J., Rodríguez G.: Configuration of limit cycles and planar polynomial vector fields. J. Diff. Eqs. 198, 374–380 (2004)MATHCrossRefGoogle Scholar
  62. 62.
    Mardesic P.: An explicit bound for the multiplicity of zeros of generic Abelian integrals. Nonlinearity 4, 845–852 (1991)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Markov Y.: Limit cycles of perturbations of a class of quadratic Hamiltonian vector fields. Serdica Math. J. 22, 91–108 (1996)MathSciNetMATHGoogle Scholar
  64. 64.
    Mañosas F., Villadelprat J.: Bounding the number of zeros of certain Abelian integrals. J. Diff. Eqs. 251, 1656–1669 (2011)MATHCrossRefGoogle Scholar
  65. 65.
    Novikov D., Yakovenko S.: Tangential Hilbert broblem for perturbations of hyperelliptic Hamiltonian systems. Electron. Res. Announc. Am. Math. Soc. 5, 55–65 (1999)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Peng L.: Unfolding of a quadratic integrable system with a homoclinic loop. Acta. Math. Sinica (English Series) 18, 737–754 (2002)MATHCrossRefGoogle Scholar
  67. 67.
    Peng, L.: Quadratic perturbations of a quadratic reversible center of genus one (Submitted)Google Scholar
  68. 68.
    Peng, L., Lei, Y.: Bifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix (Submitted)Google Scholar
  69. 69.
    Peng L., Sun Y.: The cyclicity of the period annulus of a quadratic reversible system with one center of genus one. Turk. J. Math. 35, 1–19 (2011)Google Scholar
  70. 70.
    Peng L., Lei Y.: The cyclicity of the period annulus of a quadratic reversible system with a hemicycle. Disc. Contin. Dyn. Syst. 30, 873–890 (2011)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Petrov G.S.: Number of zeros of complete elliptic integrals. Funct. Anal. Appl. 18(2), 73–74 (1984). English transl., Funct. Anal. Appl. 18(3), 148–149 (1984)Google Scholar
  72. 72.
    Pontryagin L.: On dynamical systems close to hamiltonian ones. Zh. Exp. Theor. Phys. 4, 234–238 (1934)Google Scholar
  73. 73.
    Roussarie R.: On the number of limit cycles which appear by perturbation of separate loop of planar vector fields. Bol. Soc. Bras. Mat. 17, 67–101 (1986)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Schlomiuk D.: Algebraic particular integrals, integrability and the problem of the center. Trans. Am. Math. Soc. 338, 799–841 (1993)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Shao Y., Zhao Y.: The cyclicity and period function of a class of quadratic reversible LotkaCVolterra system of genus one. J. Math. Anal. Appl. 377, 817–827 (2011)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Shao, Y., Zhao, Y.: The cyclicity of a class of quadratic reversible system of genus one. (2011, preprint)Google Scholar
  77. 77.
    Takens, F.: Forced oscillations and bifurcations: applications of global analysis. In: Commun. Math., Vol. 3, Inst. Rijksuniv. Utrecht. (1974). Also In: Broer, H.W., Krauskopf, B., Vegter, G. (ed.) Global Analysis of Dynamical Systems. IOP Publishing Ltd, London (2001)Google Scholar
  78. 78.
    Varchenko A.N.: An estimate of the number of zeros of an Abelian integral depending on a parameter and limiting cycles. Funct. Anal. Appl. 18, 98–108 (1984)MATHCrossRefGoogle Scholar
  79. 79.
    Wang J., Xiao D.: On the number of limit cycles in small perturbations of a class of hyperelliptic Hamitonian systems with one nilpotent saddle. J. Diff. Eqs. 250, 2227–2243 (2011)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Wu, J., Peng, L., Li, C-P.: On the number of limit cycles in perturbations of a quadratic reversible center (Submitted)Google Scholar
  81. 81.
    Yakovenko, S.: A Geometric Proof of the Bautin Theorem, Concerning the Hilbert 16th Problem, Amer. Math. Soc., Providence, pp. 203–219 (1995)Google Scholar
  82. 82.
    Yakovenko, S.: Qualitative theory of ordinary differential equations and tangential Hilbert 16th problem. In: Schlomiuk, D. (eds.) CRM Monograph Series, vol. 24, Amer. Math. Soc., Providence (2005)Google Scholar
  83. 83.
    Yu J., Li C.: Bifurcation of a class of planar non-Hamiltonian integrable systems with one center and one homoclinic loop. J. Math. Anal. Appl. 269, 227–243 (2002)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Yu P., Han M.: Twelve limit cycles in a cubic order planar system with Z2-symmetry. Comm. Pure Appl. Anal. 3, 515–526 (2004)MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Yu, P., Han, M., Four limit cycles from perturbing quadratic integrable systems by quadratic polynomials (2010, preprint). Posted on arXiv.org since February 4Google Scholar
  86. 87.
    Zhang Z., Li C.: On the number of limit cycles of a class of quadratic Hamiltonian systems under quadratic perturbations. Adv. Math. 26(5), 445–460 (1997)MATHGoogle Scholar
  87. 88.
    Zhao Y.: On the number of limit cycles in quadratic perturbations of quadratic codimension four center. Nonlinearity 24, 2505–2522 (2011)MathSciNetMATHCrossRefGoogle Scholar
  88. 89.
    Zhao Y., Liang Z., Lu G.: The cyclicity of period annulus of the quadratic Hamiltonian systems with non-Morsean point. J. Diff. Eqs. 162, 199–223 (2000)MathSciNetMATHCrossRefGoogle Scholar
  89. 90.
    Zhao, Y., Zhu, H.: Bifurcation of limit cycles from a non-Hamiltonian quadratic integrable system with homoclinic loop (2011, preprint)Google Scholar
  90. 91.
    Zhao Y., Zhu S.: Perturbations of the non-generic quadratic Hamiltonian vector fields with hyperbolic segment. Bull. Sci. Math. 125, 109–138 (2001)MathSciNetMATHCrossRefGoogle Scholar
  91. 92.
    Zoła¸dek H.: Quadratic systems with centers and their perturbations. J. Diff. Eqs. 109, 223–273 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations