Qualitative Theory of Dynamical Systems

, Volume 9, Issue 1–2, pp 319–324

Focal Values of Plane Cubic Centers

Open Access


We prove that the vanishing of 11 focal values is not sufficient to ensure that a complex plane cubic system has a complex center. This is done by finding a complex cubic system with a high order weak focus using an extensive computer search.


  1. 1.
    Christopher, C.: Estimating limit cycle bifurcations from centers. In Differential Equations With Symbolic Computation, Trends Math., pp. 23–35. Birkhäuser, Basel (2005)Google Scholar
  2. 2.
    Frommer M.: Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmtheitsstellen. Math. Ann. 109, 395–424 (1934)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Graf v. Bothmer H.-C.: Cord Erdenberger, and Katharina Ludwig. A new family of rational surfaces in \({\mathbb{P}^{4}}\). J. Symbolic Comput. 39(1), 51–60 (2005)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Hearn, A.: REDUCE. Available at http://www.reduce-algebra.com (2004)
  5. 5.
    Schreyer, F.-O.: Small fields in constructive algebraic geometry. In Moduli of vector bundles (Sanda, 1994; Kyoto, 1994). Lecture Notes in Pure and Appl. Math., vol. 179, pp. 221–228. Dekker, New York (1996)Google Scholar
  6. 6.
    Graf v. Bothmer, H.-C., Martin, C.: A C++ program for calculating focal values in characteristic p. Available at http://www-ifm.math.uni-hannover.de/~bothmer/strudel (2005)
  7. 7.
    Graf v. Bothmer H.-C., Martin C.: Frommers algorithm. NoDEA 14(5–6), 694–698 (2007)Google Scholar
  8. 8.
    Graf v. Bothmer, H.-C., Kröker, J.: A improved C++ program for calculating focal values in characteristic p. Available at http://www.stud.uni-hannover.de/~kroeker/centerfocus/index.html or at http://sourceforge.net/projects/centerfocus/ (2009)
  9. 9.
    Graf v. Bothmer H.-C., Schreyer F.-O.: A quick and dirty irreducibility test for multivariate polynomials over \({{\mathbb{F}}_q}\). Experiment. Math. 14(4), 415–422 (2005)MathSciNetGoogle Scholar
  10. 10.
    Wolf v. Wahl.: Personal communication (2005)Google Scholar
  11. 11.
    Żoła̧dek H.: Eleven small limit cycles in a cubic vector field. Nonlinearity 8(5), 843–860 (1995)CrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Courant Research Centre “Higher Order Structures”, Mathematisches InstitiutGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations