Advertisement

Qualitative Theory of Dynamical Systems

, Volume 9, Issue 1–2, pp 89–99 | Cite as

A New Algorithm for Finding Rational First Integrals of Polynomial Vector Fields

  • Antoni FerragutEmail author
  • Héctor Giacomini
Article

Abstract

We present a new method to compute rational first integrals of planar polynomial vector fields. The algorithm is in general much faster than the usual methods and also allows to compute the remarkable curves associated to the rational first integral of the system.

Keywords

Polynomial vector field Rational first integral Remarkable curve 

Mathematics Subject Classification (2000)

34C05 34A34 34C14 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cairó L., Llibre J.: Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2. Nonlinear Anal., Ser. A Theory Methods 67, 327–348 (2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    Casas-Alvero, E.: Singularities of plane curves. London Mathematical Society Lecture Note Series, vol. 276. Cambridge University Press, Cambridge (2000)Google Scholar
  3. 3.
    Chavarriga J., Giacomini H., Giné J., Llibre J.: Darboux integrability and the inverse integrating factor. J. Differ. Equ. 194, 116–139 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Christopher C., Llibre J.: Algebraic aspects of integrability for polynomial systems. Qual. Theory Planar Differ. Equ. 1, 71–95 (1999)MathSciNetGoogle Scholar
  5. 5.
    Christopher C., Llibre J.: Integrability via invariant algebraic curves for planar polynomial differential systems. Ann. Differ. Equ. 16, 5–19 (2000)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Christopher C., Llibre J., Pereira J.V.: Multiplicity of invariant algebraic curves in polynomial vector fields. Pacific J. Math. 229, 63–117 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Coll B., Ferragut A., Llibre J.: Polynomial inverse integrating factors of quadratic differential systems. Nonlinear Anal. 73, 881–914 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Coll B., Ferragut A., Llibre J.: Phase portraits of the quadratic systems with a polynomial inverse integrating factor. Int. J. Bifurcation Chaos 19, 1–19 (2009)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ferragut A., Llibre J.: On the remarkable values of the rational first integrals of polynomial vector fields. J. Differ. Equ. 241, 399–417 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Forsyth A.R.: Theory of Differential Equations. Cambridge University Press, Cambridge (1900)zbMATHGoogle Scholar
  11. 11.
    Furta S.D.: On non-integrability of general systems of differential equations. Z. Angew Math. Phys. 47, 112–131 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Goriely A.: Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations. J. Math. Phys. 37, 1871–1893 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jouanolou, J.P.: Equations de Pfaff algébriques. Lectures Notes in Mathematics, vol. 708. Springer, Berlin (1979)Google Scholar
  14. 14.
    Kummer M., Churchill R.C., Rod D.L.: On a result of Bruns. Can. Math. Bull. 33, 175–180 (1990)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Li W., Llibre J., Zhang X.: Planar analytic vector fields with generalized rational first integrals. Bull. Sci. Math. 125, 341–361 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Li W., Llibre J., Zhang X.: Local first integrals of differential systems and diffeomorphisms. Z. Angew. Math. Phys. 54, 235–255 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Llibre J., Oliveira R.D.: Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 3. Nonlinear Anal., Ser. A Theory Methods 70, 3549–3560 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Poincaré H.: Sur l’intégration des équations différentielles du premier ordre et du premier degré I and II. Rendiconti del Circolo Matematico di Palermo 5, 161–191 (1891)CrossRefGoogle Scholar
  19. 19.
    Poincaré H.: Sur l’intégration des équations différentielles du premier ordre et du premier degré I and II. Rendiconti del Circolo Matematico di Palermo 11, 193–239 (1897)zbMATHCrossRefGoogle Scholar
  20. 20.
    Prelle M.J., Singer M.F.: Elementary first integrals of differential equations. Trans. Am. Math. Soc. 279, 215–229 (1983)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Singer M.F.: Liouvillian first integrals of differential equations. Trans. Am. Math. Soc. 333, 673–688 (1992)zbMATHCrossRefGoogle Scholar
  22. 22.
    Wolfram S.: The Mathematica Book, 5th edn. Wolfram Media, USA (2003)Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Departament de Matemàtica Aplicada IUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Laboratoire de Mathématique et Physique Théorique, CNRS UMR 6083, UFR Sciences et TechniquesUniversité de ToursToursFrance

Personalised recommendations