Clinical Journal of Gastroenterology

, Volume 4, Issue 4, pp 185–197 | Cite as

Chemoprevention against hepatocellular carcinoma

  • Jun-ichi Okano
  • Yuki Fujise
  • Ryo Abe
  • Ryu Imamoto
  • Yoshikazu Murawaki
Clinical Review

Abstract

Since the majority of hepatocellular carcinoma (HCC) arises from a background of chronic liver diseases caused by infection with hepatitis C virus (HCV) and hepatitis B virus (HBV), chemoprevention targeting patients at high risk of HCC is feasible. In this review article, we summarize current knowledge of chemoprevention against HCC mostly using phytochemicals which have less toxicity than pharmaceutical agents. We describe in vivo and in vitro evidence and proposed mechanisms of beneficial effects of several compounds on the liver, including acyclic retinoid (ACR), angiotensin-converting enzyme inhibitors (ACEIs), caffeine, capsaicin, cepharanthine (CEP), cinnamaldehyde, curcumin, diallyl sulfide (DAS), eicosapentaenoic acid (EPA), epigallocatechin-3-gallate (EGCG), genistein, lycopene, resveratrol, silymarin, sulforaphane (SFN), and xanthohumol (XN). Because antihepatocarcinogenic effects by these compounds are mostly based on experimental studies, clinical evidence is urgently necessary.

Keywords

Hepatocellular carcinoma Chemoprevention Phytochemicals 

Abbreviations

AP-1

Activator protein 1

ACR

Acyclic retinoid

AFP

Alpha-fetoprotein

ACEI

Angiotensin-converting enzyme inhibitor

ARE

Antioxidant responsive element

b-FGF

Basic fibroblast growth factor

BCAAs

Branched-chain amino acids

CEP

Cepharanthine

COX-2

Cyclooxygenase-2

DAS

Diallyl sulfide

DEN

Diethylnitrosamine

EPA

Eicosapentaenoic acid

EGCG

Epigallocatechin-3-gallate

ERK1/2

Extracellular signal-regulated kinase 1/2

FAP

Familial adenomatous polyposis

FAS

Fatty acid synthase

GST

Glutathione S-transferase

GSK

Glycogen synthase kinase

HSP

Heat shock protein

HBV

Hepatitis B virus

HCV

Hepatitis C virus

HCC

Hepatocellular carcinoma

HMG-CoA

3-Hydroxy-3-methyl-glutaryl coenzyme A reductase

IGF-1R

Insulin-like growth factor-1 receptor

IFN

Interferon

JNK

c-Jun NH2-terminal kinase

Keap1

Kelch-like ECH-associated protein 1

MMP

Matrix metalloproteinase

MAPK

Mitogen-activated protein kinase

mTOR

Mammalian target of rapamycin

MTT

Molecular targeted therapy

NASH

Nonalcoholic steatohepatitis

Nrf2

NF-E2-related factor 2

NOS

Nitric oxide synthase

NDEA

N-nitrosodiethylamine

NF-kappaB

Nuclear factor-kappaB

PEIT

Percutaneous ethanol injection

PTEN

Phosphatase and tensin homolog

PDGF

Platelet-derived growth factor

PUFA

Polyunsaturated fatty acid

PIVKA-II

Protein induced by vitamin K absence or antagonist

RFA

Radiofrequency ablation

RAS

Renin–angiotensin system

SFN

Sulforaphane

STAT

Signal transducer and activator of transcription

hTERT

Telomerase reverse transcriptase

Trx

Thioredoxin

TNF

Tumor necrosis factor

TACE

Transarterial chemoembolization

TRAIL

Tumor necrosis factor-related apoptosis-inducing ligand

VEGF

Vascular endothelial growth factor

XN

Xanthohumol

References

  1. 1.
    Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19:271–85.PubMedCrossRefGoogle Scholar
  2. 2.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6:674–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Shen YC, Hsu C, Cheng AL. Molecular targeted therapy for advanced hepatocellular carcinoma: current status and future perspectives. J Gastroenterol. 2010;45:794–807.PubMedCrossRefGoogle Scholar
  5. 5.
    Makuuchi M, Kokudo N, Arii S, Futagawa S, Kaneko S, Kawasaki S, et al. Development of evidence-based clinical guidelines for the diagnosis and treatment of hepatocellular carcinoma in Japan. Hepatol Res. 2008;38:37–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004;134:3479S–85S.PubMedGoogle Scholar
  7. 7.
    Zhang Y, Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin. 2007;28:1343–54.PubMedCrossRefGoogle Scholar
  8. 8.
    Shu L, Cheung KL, Khor TO, Chen C, Kong AN. Phytochemicals: cancer chemoprevention and suppression of tumor onset and metastasis. Cancer Metastasis Rev. 2010;29:483–502.PubMedCrossRefGoogle Scholar
  9. 9.
    Damery S, Gratus C, Grieve R, Warmington S, Jones J, Routledge P, et al. The use of herbal medicines by people with cancer: a cross-sectional survey. Br J Cancer. 2011;104:927–33.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hong WK, Lippman SM. Cancer chemoprevention. J Natl Cancer Inst Monogr. 1995:49–53.Google Scholar
  11. 11.
    Yang YF, Zhao W, Zhong YD, Xia HM, Shen L, Zhang N. Interferon therapy in chronic hepatitis B reduces progression to cirrhosis and hepatocellular carcinoma: a meta-analysis. J Viral Hepat. 2009;16:265–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Akuta N, Suzuki F, Suzuki Y, Akuta N, Suzuki F, Suzuki Y, Sezaki H, Hosaka T, et al. Long-term follow-up of interferon monotherapy in 454 consecutive naive patients infected with hepatitis C virus: multi-course interferon therapy may reduce the risk of hepatocellular carcinoma and increase survival. Scand J Gastroenterol. 2005;40:688–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Omata M, Yoshida H, Shiratori Y. Prevention of hepatocellular carcinoma and its recurrence in chronic hepatitis C patients by interferon therapy. Clin Gastroenterol Hepatol. 2005;3:S141–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Suou T, Mitsuda A, Koda M, Matsuda H, Maruyama S, Tanaka H, et al. Interferon alpha inhibits intrahepatic recurrence in hepatocellular carcinoma with chronic hepatitis C: a pilot study. Hepatol Res. 2001;20:301–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Uenishi T, Nishiguchi S, Tamori A, Yamamoto T, Shuto T, Hirohashi K, et al. Influence of interferon therapy on outcome after surgery for hepatitis C virus-related hepatocellular carcinoma. Hepatol Res. 2006;36:195–200.PubMedCrossRefGoogle Scholar
  16. 16.
    Ishikawa T. Secondary prevention of recurrence by interferon therapy after ablation therapy for hepatocellular carcinoma in chronic hepatitis C patients. World J Gastroenterol. 2008;14:6140–4.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Di Bisceglie AM, Shiffman ML, Everson GT, Lindsay KL, Everhart JE, Wright EC, et al. Prolonged therapy of advanced chronic hepatitis C with low-dose peginterferon. N Engl J Med. 2008;359:2429–41.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    de Lope CR, Bruix J. Failure of interferon to prevent disease progression and liver cancer in hepatitis C virus infection: proof of absence or absence of proof? Gastroenterology. 2010;138:777–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Nakamura N, Shidoji Y, Yamada Y, Hatakeyama H, Moriwaki H, Muto Y, et al. Induction of apoptosis by acyclic retinoid in the human hepatoma-derived cell line, HuH-7. Biochem Biophys Res Commun. 1995;207:382–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Matsushima-Nishiwaki R, Shidoji Y, Nishiwaki S, Yamada T, Moriwaki H, Muto Y. Aberrant metabolism of retinoid X receptor proteins in human hepatocellular carcinoma. Mol Cell Endocrinol. 1996;121:179–90.PubMedCrossRefGoogle Scholar
  22. 22.
    Yanagitani A, Yamada S, Yasui S, Shimomura T, Murai R, Murawaki Y, et al. Retinoic acid receptor alpha dominant negative form causes steatohepatitis and liver tumors in transgenic mice. Hepatology. 2004;40:366–75.PubMedCrossRefGoogle Scholar
  23. 23.
    Shimizu M, Sakai H, Shirakami Y, Iwasa J, Yasuda Y, Kubota M, et al. Acyclic retinoid inhibits diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BLKS/J- +(db)/+Lepr(db) mice. Cancer Prev Res (Phila). 2011;4:128–36.CrossRefGoogle Scholar
  24. 24.
    Komi Y, Sogabe Y, Ishibashi N, Sato Y, Moriwaki H, Shimokado K, et al. Acyclic retinoid inhibits angiogenesis by suppressing the MAPK pathway. Lab Invest. 2010;90:52–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Tatsukawa H, Sano T, Fukaya Y, Ishibashi N, Watanabe M, Okuno M, et al. Dual induction of caspase 3- and transglutaminase-dependent apoptosis by acyclic retinoid in hepatocellular carcinoma cells. Mol Cancer. 2011;10:4.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Suzui M, Masuda M, Lim JT, Albanese C, Pestell RG, Weinstein IB, et al. Growth inhibition of human hepatoma cells by acyclic retinoid is associated with induction of p21(CIP1) and inhibition of expression of cyclin D1. Cancer Res. 2002;62:3997–4006.PubMedGoogle Scholar
  27. 27.
    Muto Y, Moriwaki H, Ninomiya M, Adachi S, Saito A, Takasaki KT, et al. Prevention of second primary tumors by an acyclic retinoid, polyprenoic acid, in patients with hepatocellular carcinoma. Hepatoma Prevention Study Group. N Engl J Med. 1996;334:1561–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Muto Y, Moriwaki H, Saito A. Prevention of second primary tumors by an acyclic retinoid in patients with hepatocellular carcinoma. N Engl J Med. 1999;340:1046–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Okita K, Matsui O, Kumada H, Tanaka K, Kaneko S, Moriwaki H, et al. Effect of peretinoin on recurrence of hepatocellular carcinoma (HCC): results of a phase II/III randomized placebo-controlled trial. J Clin Oncol. 2010;28:4024. [abstract].CrossRefGoogle Scholar
  30. 30.
    Lever AF, Hole DJ, Gillis CR, McCallum IR, McInnes GT, MacKinnon PL, et al. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet. 1998;352:179–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Yoshiji H, Noguchi R, Ikenaka Y, Kitade M, Kaji K, Tsujimoto T, et al. Renin–angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Curr Med Chem. 2007;14:2749–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Yoshiji H, Yoshii J, Ikenaka Y, Noguchi R, Tsujinoue H, Nakatani T, et al. Inhibition of renin–angiotensin system attenuates liver enzyme-altered preneoplastic lesions and fibrosis development in rats. J Hepatol. 2002;37:22–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Noguchi R, Yoshiji H, Kuriyama S, et al. Combination of interferon-beta and the angiotensin-converting enzyme inhibitor, perindopril, attenuates murine hepatocellular carcinoma development and angiogenesis. Clin Cancer Res. 2003;9:6038–45.PubMedGoogle Scholar
  34. 34.
    Yoshiji H, Noguchi R, Kuriyama S, Yoshii J, Ikenaka Y, Yanase K, et al. Suppression of renin–angiotensin system attenuates hepatocarcinogenesis via angiogenesis inhibition in rats. Anticancer Res. 2005;25:3335–40.PubMedGoogle Scholar
  35. 35.
    Yoshiji H, Noguchi R, Kaji K, Ikenaka Y, Shirai Y, Namisaki T, et al. Attenuation of insulin-resistance-based hepatocarcinogenesis and angiogenesis by combined treatment with branched-chain amino acids and angiotensin-converting enzyme inhibitor in obese diabetic rats. J Gastroenterol. 2010;45:443–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Ager EI, Neo J, Christophi C. The renin–angiotensin system and malignancy. Carcinogenesis. 2008;29:1675–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Yoshiji H, Noguchi R, Toyohara M, Ikenaka Y, Kitade M, Kaji K, et al. Combination of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates cumulative recurrence of hepatocellular carcinoma. J Hepatol. 2009;51:315–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Bode AM, Dong Z. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett. 2007;247:26–39.PubMedCrossRefGoogle Scholar
  39. 39.
    Nkondjock A. Coffee consumption and the risk of cancer: an overview. Cancer Lett. 2009;277:121–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Ruhl CE, Everhart JE. Coffee and tea consumption are associated with a lower incidence of chronic liver disease in the United States. Gastroenterology. 2005;129:1928–36.PubMedCrossRefGoogle Scholar
  41. 41.
    Gelatti U, Covolo L, Franceschini M, Pirali F, Tagger A, Ribero ML, et al. Coffee consumption reduces the risk of hepatocellular carcinoma independently of its aetiology: a case–control study. J Hepatol. 2005;42:528–34.PubMedCrossRefGoogle Scholar
  42. 42.
    Ohfuji S, Fukushima W, Tanaka T, Habu D, Tamori A, Sakaguchi H, et al. Coffee consumption and reduced risk of hepatocellular carcinoma among patients with chronic type C liver disease: a case–control study. Hepatol Res. 2006;36:201–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Johnson S, Koh WP, Wang R, Govindarajan S, Yu MC, Yuan JM. Coffee consumption and reduced risk of hepatocellular carcinoma: findings from the Singapore Chinese Health Study. Cancer Causes Control. 2011;22:503–10.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Balansky RM, Blagoeva PM, Mircheva ZI, De Flora S. Modulation of diethylnitrosamine carcinogenesis in rat liver and oesophagus. J Cell Biochem. 1994;56:449–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Hosaka S, Kawa S, Aoki Y, Tanaka E, Yoshizawa K, Karasawa Y, et al. Hepatocarcinogenesis inhibition by caffeine in ACI rats treated with 2-acetylaminofluorene. Food Chem Toxicol. 2001;39:557–61.PubMedCrossRefGoogle Scholar
  46. 46.
    Asaad NA, Zeng ZC, Guan J, Thacker J, Iliakis G. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants. Oncogene. 2000;19:5788–800.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang TJ, Liu ZS, Zeng ZC, Du SS, Qiang M, Zhang SM, et al. Caffeine enhances radiosensitization to orthotopic transplant LM3 hepatocellular carcinoma in vivo. Cancer Sci. 2010;101:1440–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Cavin C, Holzhaeuser D, Scharf G, Constable A, Huber WW, Schilter B. Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem Toxicol. 2002;40:1155–63.PubMedCrossRefGoogle Scholar
  49. 49.
    Okano J, Nagahara T, Matsumoto K, Murawaki Y. Caffeine inhibits the proliferation of liver cancer cells and activates the MEK/ERK/EGFR signalling pathway. Basic Clin Pharmacol Toxicol. 2008;102:543–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Tao KS, Wang W, Wang L, Cao DY, Li YQ, Wu SX, et al. The multifaceted mechanisms for coffee’s anti-tumorigenic effect on liver. Med Hypotheses. 2008;71:730–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Tai J, Cheung S, Chan E, Hasman D. Antiproliferation effect of commercially brewed coffees on human ovarian cancer cells in vitro. Nutr Cancer. 2010;62:1044–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Holzer P, Sametz W. Gastric mucosal protection against ulcerogenic factors in the rat mediated by capsaicin-sensitive afferent neurons. Gastroenterology. 1986;91:975–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Chang HC, Chen ST, Chien SY, Kuo SJ, Tsai HT, Chen DR. Capsaicin may induce breast cancer cell death through apoptosis-inducing factor involving mitochondrial dysfunction. Hum Exp Toxicol. 2011 (in press).Google Scholar
  54. 54.
    Díaz-Laviada I. Effect of capsaicin on prostate cancer cells. Future Oncol. 2010;6:1545–50.PubMedCrossRefGoogle Scholar
  55. 55.
    Lu HF, Chen YL, Yang JS, Yang YY, Liu JY, Hsu SC, et al. Antitumor activity of capsaicin on human colon cancer cells in vitro and colo 205 tumor xenografts in vivo. J Agric Food Chem. 2010;58:12999–3005.PubMedCrossRefGoogle Scholar
  56. 56.
    Jung MY, Kang HJ, Moon A. Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett. 2001;165:139–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Baek YM, Hwang HJ, Kim SW, Hwang HS, Lee SH, Kim JA, et al. A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics. 2008;8:4748–67.PubMedCrossRefGoogle Scholar
  58. 58.
    Huang SP, Chen JC, Wu CC, Chen CT, Tang NY, Ho YT, et al. Capsaicin-induced apoptosis in human hepatoma HepG2 cells. Anticancer Res. 2009;29:165–74.PubMedGoogle Scholar
  59. 59.
    Oyagbemi AA, Saba AB, Azeez OI. Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J Cancer. 2010;47:53–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Thoennissen NH, O’Kelly J, Lu D, Iwanski GB, La DT, Abbassi S, et al. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene. 2010;29:285–96.PubMedCrossRefGoogle Scholar
  61. 61.
    Yang ZH, Wang XH, Wang HP, Hu LQ, Zheng XM, Li SW. Capsaicin mediates cell death in bladder cancer T24 cells through reactive oxygen species production and mitochondrial depolarization. Urology. 2010;75:735–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Seubwai W, Vaeteewoottacharn K, Hiyoshi M, Suzu S, Puapairoj A, Wongkham C, et al. Cepharanthine exerts antitumor activity on cholangiocarcinoma by inhibiting NF-kappaB. Cancer Sci. 2010;101:1590–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Harada K, Ferdous T, Itashiki Y, Takii M, Mano T, Mori Y, et al. Cepharanthine inhibits angiogenesis and tumorigenicity of human oral squamous cell carcinoma cells by suppressing expression of vascular endothelial growth factor and interleukin-8. Int J Oncol. 2009;35:1025–35.PubMedCrossRefGoogle Scholar
  64. 64.
    Kikukawa Y, Okuno Y, Tatetsu H, Nakamura M, Harada N, Ueno S, et al. Induction of cell cycle arrest and apoptosis in myeloma cells by cepharanthine, a biscoclaurine alkaloid. Int J Oncol. 2008;33:807–14.PubMedGoogle Scholar
  65. 65.
    Biswas KK, Tancharoen S, Sarker KP, Kawahara K, Hashiguchi T, Maruyama I. Cepharanthine triggers apoptosis in a human hepatocellular carcinoma cell line (HuH-7) through the activation of JNK1/2 and the downregulation of Akt. FEBS Lett. 2006;580:703–10.PubMedCrossRefGoogle Scholar
  66. 66.
    Nakajima A, Yamamoto Y, Taura K, Hata K, Fukumoto M, Uchinami H, et al. Beneficial effect of cepharanthine on overcoming drug-resistance of hepatocellular carcinoma. Int J Oncol. 2004;24:635–45.PubMedGoogle Scholar
  67. 67.
    Kim SY, Koo YK, Koo JY, Ngoc TM, Kang SS, Bae K, et al. Platelet anti-aggregation activities of compounds from Cinnamomum cassia. J Med Food. 2010;13:1069–74.PubMedCrossRefGoogle Scholar
  68. 68.
    Subash Babu P, Prabuseenivasan S, Ignacimuthu S. Cinnamaldehyde—a potential antidiabetic agent. Phytomedicine. 2007;14:15–22.PubMedCrossRefGoogle Scholar
  69. 69.
    Chew EH, Nagle AA, Zhang Y, Scarmagnani S, Palaniappan P, Bradshaw TD, et al. Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: potential candidates for cancer therapy and chemoprevention. Free Radic Biol Med. 2010;48:98–111.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee CW, Hong DH, Han SB, Park SH, Kim HK, Kwon BM, et al. Inhibition of human tumor growth by 2′-hydroxy- and 2′-benzoyloxycinnamaldehydes. Planta Med. 1999;65:263–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Han DC, Lee MY, Shin KD, Jeon SB, Kim JM, Son KH, et al. 2′-benzoyloxycinnamaldehyde induces apoptosis in human carcinoma via reactive oxygen species. J Biol Chem. 2004;279:6911–20.PubMedCrossRefGoogle Scholar
  72. 72.
    Wu SJ, Ng LT, Lin CC. Cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells through activation of the proapoptotic Bcl-2 family proteins and MAPK pathway. Life Sci. 2005;77:938–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Moon EY, Lee MR, Wang AG, Lee JH, Kim HC, Kim HM, et al. Delayed occurrence of H-ras12 V-induced hepatocellular carcinoma with long-term treatment with cinnamaldehydes. Eur J Pharmacol. 2006;530:270–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Epelbaum R, Schaffer M, Vizel B, Badmaev V, Bar-Sela G. Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr Cancer. 2010;62:1137–41.PubMedCrossRefGoogle Scholar
  75. 75.
    Shankar S, Srivastava RK. Involvement of Bcl-2 family members, phosphatidylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol. 2007;30:905–18.PubMedGoogle Scholar
  76. 76.
    Cao J, Liu Y, Jia L, Zhou HM, Kong Y, Yang G, et al. Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radic Biol Med. 2007;43:968–75.PubMedCrossRefGoogle Scholar
  77. 77.
    Lev-Ari S, Vexler A, Starr A, Ashkenazy-Voghera M, Greif J, Aderka D, et al. Curcumin augments gemcitabine cytotoxic effect on pancreatic adenocarcinoma cell lines. Cancer Invest. 2007;25:411–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Chuang SE, Kuo ML, Hsu CH, Chen CR, Lin JK, Lai GM, et al. Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis. 2000;21:331–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Shukla Y, Arora A. Suppression of altered hepatic foci development by curcumin in Wistar rats. Nutr Cancer. 2003;45:53–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Sreepriya M, Bali G. Effects of administration of embelin and curcumin on lipid peroxidation, hepatic glutathione antioxidant defense and hematopoietic system during N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats. Mol Cell Biochem. 2006;284:49–55.PubMedCrossRefGoogle Scholar
  81. 81.
    Yoysungnoen P, Wirachwong P, Bhattarakosol P, et al. Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc. 2006;34:109–15.PubMedGoogle Scholar
  82. 82.
    Lin LI, Ke YF, Ko YC, Lin JK. Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology. 1998;55:349–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, et al. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res. 2001;7:1894–900.PubMedGoogle Scholar
  84. 84.
    Shukla Y, Kalra N. Cancer chemoprevention with garlic and its constituents. Cancer Lett. 2007;247:167–81.PubMedCrossRefGoogle Scholar
  85. 85.
    Block E. The chemistry of garlic and onions. Sci Am. 1985;252:114–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Ginter E, Simko V. Garlic (Allium sativum L.) and cardiovascular diseases. Bratisl Lek Listy. 2010;111:452–6.PubMedGoogle Scholar
  87. 87.
    Haber-Mignard D, Suschetet M, Bergès R, Astorg P, Siess MH. Inhibition of aflatoxin B1- and N-nitrosodiethylamine-induced liver preneoplastic foci in rats fed naturally occurring allyl sulfides. Nutr Cancer. 1996;25:61–70.PubMedCrossRefGoogle Scholar
  88. 88.
    Sengupta A, Ghosh S, Das RK, Bhattacharjee S, Bhattacharya S. Chemopreventive potential of diallylsulfide, lycopene and theaflavin during chemically induced colon carcinogenesis in rat colon through modulation of cyclooxygenase-2 and inducible nitric oxide synthase pathways. Eur J Cancer Prev. 2006;15:301–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Wang HC, Yang JH, Hsieh SC, Sheen LY. Allyl sulfides inhibit cell growth of skin cancer cells through induction of DNA damage mediated G2/M arrest and apoptosis. J Agric Food Chem. 2010;58:7096–103.PubMedCrossRefGoogle Scholar
  90. 90.
    Singh A, Arora A, Shukla Y. Modulation of altered hepatic foci induction by diallyl sulphide in Wistar rats. Eur J Cancer Prev. 2004;13:263–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Ibrahim SS, Nassar NN. Diallyl sulfide protects against N-nitrosodiethylamine-induced liver tumorigenesis: role of aldose reductase. World J Gastroenterol. 2008;14:6145–53.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Shaik IH, George JM, Thekkumkara TJ, Mehvar R. Protective effects of diallyl sulfide, a garlic constituent, on the warm hepatic ischemia-reperfusion injury in a rat model. Pharm Res. 2008;25:2231–42.PubMedCrossRefGoogle Scholar
  93. 93.
    Manerba A, Vizzardi E, Metra M, Dei Cas L. n-3 PUFAs and cardiovascular disease prevention. Future Cardiol. 2010;6:343–50.PubMedCrossRefGoogle Scholar
  94. 94.
    Gao L, Wang J, Sekhar KR, Yin H, Yared NF, Schneider SN, et al. Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J Biol Chem. 2007;282:2529–37.PubMedCrossRefGoogle Scholar
  95. 95.
    Trabal J, Leyes P, Forga M, Maurel J. Potential usefulness of an EPA-enriched nutritional supplement on chemotherapy tolerability in cancer patients without overt malnutrition. Nutr Hosp. 2010;25:736–40.PubMedGoogle Scholar
  96. 96.
    Fini L, Piazzi G, Ceccarelli C, Daoud Y, Belluzzi A, Munarini A, et al. Highly purified eicosapentaenoic acid as free fatty acids strongly suppresses polyps in Apc(Min/+) mice. Clin Cancer Res. 2010;16:5703–11.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    West NJ, Clark SK, Phillips RK, Hutchinson JM, Leicester RJ, Belluzzi A, et al. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut. 2010;59:918–25.PubMedCrossRefGoogle Scholar
  98. 98.
    Calviello G, Palozza P, Franceschelli P, Frattucci A, Piccioni E, Tessitore L, et al. Eicosapentaenoic acid inhibits the growth of liver preneoplastic lesions and alters membrane phospholipid composition and peroxisomal beta-oxidation. Nutr Cancer. 1999;34:206–12.PubMedCrossRefGoogle Scholar
  99. 99.
    Ishii H, Horie Y, Ohshima S, Anezaki Y, Anezaki Y, Kinoshita N, et al. Eicosapentaenoic acid ameliorates steatohepatitis and hepatocellular carcinoma in hepatocyte-specific Pten-deficient mice. J Hepatol. 2009;50:562–71.PubMedCrossRefGoogle Scholar
  100. 100.
    Calviello G, Palozza P, Piccioni E, Maggiano N, Frattucci A, Franceschelli P, et al. Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats: effects on proliferation and apoptosis. Int J Cancer. 1998;75:699–705.PubMedCrossRefGoogle Scholar
  101. 101.
    Notarnicola M, Messa C, Refolo MG, Tutino V, Miccolis A, Caruso MG. Polyunsaturated fatty acids reduce fatty acid synthase and hydroxy-methyl-glutaryl CoA-reductase gene expression and promote apoptosis in HepG2 cell line. Lipids Health Dis. 2011;10:10.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lim K, Han C, Dai Y, Shen M, Wu T. Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2. Mol Cancer Ther. 2009;8:3046–55.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yang CS, Lambert JD, Ju J, Lu G, Sang S. Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol Appl Pharmacol. 2007;224:265–73.PubMedCrossRefGoogle Scholar
  104. 104.
    Yang CS, Wang H, Li GX, Yang Z, Guan F, Jin H. Cancer prevention by tea: evidence from laboratory studies. Pharmacol Res. 2011. doi:10.1016/j.phrs.2011.03.001.
  105. 105.
    Chen D, Daniel KG, Kuhn DJ, Kazi A, Bhuiyan M, Li L, et al. Green tea and tea polyphenols in cancer prevention. Front Biosci. 2004;9:2618–31.PubMedCrossRefGoogle Scholar
  106. 106.
    Yamane T, Takahashi T, Kuwata K, Oya K, Inagake M, Kitao Y, et al. Inhibition of N-methyl-N′-nitro-N-nitrosoguanidine-induced carcinogenesis by (−)-epigallocatechin gallate in the rat glandular stomach. Cancer Res. 1995;55:2081–4.PubMedGoogle Scholar
  107. 107.
    Matsumoto N, Kohri T, Okushio K, Hara Y. Inhibitory effects of tea catechins, black tea extract and oolong tea extract on hepatocarcinogenesis in rat. Jpn J Cancer Res. 1996;87:1034–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Umemura T, Kai S, Hasegawa R, Kanki K, Kitamura Y, Nishikawa A, et al. Prevention of dual promoting effects of pentachlorophenol, an environmental pollutant, on diethylnitrosamine-induced hepato- and cholangiocarcinogenesis in mice by green tea infusion. Carcinogenesis. 2003;24:1105–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Shimizu M, Sakai H, Shirakami Y, Yasuda Y, Kubota M, Terakura D, et al. Preventive effects of (−)-epigallocatechin gallate on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db mice. Cancer Prev Res (Phila). 2011;4:396–403.CrossRefGoogle Scholar
  110. 110.
    Kaufmann R, Henklein P, Henklein P, Settmacher U. Green tea polyphenol epigallocatechin-3-gallate inhibits thrombin-induced hepatocellular carcinoma cell invasion and p42/p44-MAPKinase activation. Oncol Rep. 2009;21:1261–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Nishikawa T, Nakajima T, Moriguchi M, Jo M, Sekoguchi S, Ishii M, et al. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J Hepatol. 2006;44:1074–82.PubMedCrossRefGoogle Scholar
  112. 112.
    Huang CH, Tsai SJ, Wang YJ, Pan MH, Kao JY, Way TD. EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol Nutr Food Res. 2009;53:1156–65.PubMedCrossRefGoogle Scholar
  113. 113.
    Shirakami Y, Shimizu M, Adachi S, Sakai H, Nakagawa T, Yasuda Y, et al. (−)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor-vascular endothelial growth factor receptor axis. Cancer Sci. 2009;100:1957–62.PubMedCrossRefGoogle Scholar
  114. 114.
    Rusin A, Krawczyk Z, Grynkiewicz G, Gogler A, Zawisza-Puchałka J, Szeja W. Synthetic derivatives of genistein, their properties and possible applications. Acta Biochim Pol. 2010;57:23–34.PubMedGoogle Scholar
  115. 115.
    Sharp GB, Lagarde F, Mizuno T, Sauvaget C, Fukuhara T, Allen N, et al. Relationship of hepatocellular carcinoma to soya food consumption: a cohort-based, case–control study in Japan. Int J Cancer. 2005;115:290–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Lei B, Roncaglia V, Viganò R, Cremonini C, De Maria N, Del Buono MG, et al. Phytoestrogens and liver disease. Mol Cell Endocrinol. 2002;193:81–4.PubMedCrossRefGoogle Scholar
  117. 117.
    Fukuda K, Shibata A, Hirohata I, Tanikawa K, Yamaguchi G, Ishii M. A hospital-based case–control study on hepatocellular carcinoma in Fukuoka and Saga Prefectures, northern Kyushu, Japan. Jpn J Cancer Res. 1993;84:708–14.PubMedCrossRefGoogle Scholar
  118. 118.
    Kurahashi N, Inoue M, Iwasaki M, Tanaka Y, Mizokami M, Tsugane S, et al. Isoflavone consumption and subsequent risk of hepatocellular carcinoma in a population-based prospective cohort of Japanese men and women. Int J Cancer. 2009;124:1644–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Su SJ, Chow NH, Kung ML, Hung TC, Chang KL. Effects of soy isoflavones on apoptosis induction and G2-M arrest in human hepatoma cells involvement of caspase-3 activation, Bcl-2 and Bcl-XL downregulation, and Cdc2 kinase activity. Nutr Cancer. 2003;45:113–23.PubMedCrossRefGoogle Scholar
  120. 120.
    Jin CY, Park C, Moon SK, Kim GY, Kwon TK, Lee SJ, et al. Genistein sensitizes human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by enhancing Bid cleavage. Anticancer Drugs. 2009;20:713–22.PubMedCrossRefGoogle Scholar
  121. 121.
    Chodon D, Banu SM, Padmavathi R, Sakthisekaran D. Inhibition of cell proliferation and induction of apoptosis by genistein in experimental hepatocellular carcinoma. Mol Cell Biochem. 2007;297:73–80.PubMedCrossRefGoogle Scholar
  122. 122.
    Ji G, Yang Q, Hao J, Guo L, Chen X, Hu J, et al. Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. Int Immunopharmacol. 2011;11:762–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Seren S, Mutchnick M, Hutchinson D, Harmanci O, Bayraktar Y, Mutchnick S, et al. Potential role of lycopene in the treatment of hepatitis C and prevention of hepatocellular carcinoma. Nutr Cancer. 2008;60:729–35.PubMedCrossRefGoogle Scholar
  124. 124.
    Burton GW, Ingold KU. beta-Carotene: an unusual type of lipid antioxidant. Science. 1984;224:569–73.PubMedCrossRefGoogle Scholar
  125. 125.
    Lippi G, Targher G. Tomatoes, lycopene-containing foods and cancer risk. Br J Cancer. 2011;104:1234–5.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chew BP, Park JS. Carotenoid action on the immune response. J Nutr. 2004;134:257S–61S.PubMedGoogle Scholar
  127. 127.
    Gius D, Botero A, Shah S, Curry HA. Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicol Lett. 1999;106:93–106.PubMedCrossRefGoogle Scholar
  128. 128.
    Polívková Z, Šmerák P, Demová H, Houška M. Antimutagenic effects of lycopene and tomato purée. J Med Food. 2010;13:1443–50.PubMedCrossRefGoogle Scholar
  129. 129.
    Astorg P, Gradelet S, Bergès R, Suschetet M. Dietary lycopene decreases the initiation of liver preneoplastic foci by diethylnitrosamine in the rat. Nutr Cancer. 1997;29:60–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Toledo LP, Ong TP, Pinho AL, Jordão A Jr, Vanucchi H, Moreno FS. Inhibitory effects of lutein and lycopene on placental glutathione S-transferase-positive preneoplastic lesions and DNA strand breakage induced in Wistar rats by the resistant hepatocyte model of hepatocarcinogenesis. Nutr Cancer. 2003;47:62–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Nishino H. Prevention of hepatocellular carcinoma in chronic viral hepatitis patients with cirrhosis by carotenoid mixture. Recent Results Cancer Res. 2007;174:67–71.PubMedCrossRefGoogle Scholar
  132. 132.
    Wang Y, Ausman LM, Greenberg AS, Russell RM, Wang XD. Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats. Int J Cancer. 2010;126:1788–96.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Chachay VS, Kirkpatrick CM, Hickman IJ, Ferguson M, Prins JB, Martin JH. Resveratrol—pills to replace a healthy diet? Br J Clin Pharmacol. 2011. doi:10.1111/j.1365-2125.2011.03966.x.
  134. 134.
    Bishayee A, Dhir N. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis. Chem Biol Interact. 2009;179:131–44.PubMedCrossRefGoogle Scholar
  135. 135.
    Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004;24:2783–840.PubMedGoogle Scholar
  136. 136.
    Shankar S, Singh G, Srivastava RK. Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci. 2007;12:4839–54.PubMedCrossRefGoogle Scholar
  137. 137.
    Vitrac X, Desmoulière A, Brouillaud B, Krisa S, Deffieux G, Barthe N, et al. Distribution of [14C]-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration. Life Sci. 2003;72:2219–33.PubMedCrossRefGoogle Scholar
  138. 138.
    Bishayee A, Waghray A, Barnes KF, Mbimba T, Bhatia D, Chatterjee M, et al. Suppression of the inflammatory cascade is implicated in resveratrol chemoprevention of experimental hepatocarcinogenesis. Pharm Res. 2010;27:1080–91.PubMedCrossRefGoogle Scholar
  139. 139.
    Delmas D, Jannin B, Cherkaoui Malki M, Latruffe N. Inhibitory effect of resveratrol on the proliferation of human and rat hepatic derived cell lines. Oncol Rep. 2000;7:847–52.PubMedGoogle Scholar
  140. 140.
    Notas G, Nifli AP, Kampa M, Vercauteren J, Kouroumalis E, Castanas E. Resveratrol exerts its antiproliferative effect on HepG2 hepatocellular carcinoma cells, by inducing cell cycle arrest, and NOS activation. Biochim Biophys Acta. 2006;1760:1657–66.PubMedCrossRefGoogle Scholar
  141. 141.
    Yu H, Pan C, Zhao S, Wang Z, Zhang H, Wu W. Resveratrol inhibits tumor necrosis factor-alpha-mediated matrix metalloproteinase-9 expression and invasion of human hepatocellular carcinoma cells. Biomed Pharmacother. 2008;62:366–72.PubMedCrossRefGoogle Scholar
  142. 142.
    Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: past, present, future. Phytother Res. 2010;24:1423–32.PubMedCrossRefGoogle Scholar
  143. 143.
    Rambaldi A, Jacobs BP, Iaquinto G, Gluud C. Milk thistle for alcoholic and/or hepatitis B or C liver diseases–a systematic cochrane hepato-biliary group review with meta-analyses of randomized clinical trials. Am J Gastroenterol. 2005;100:2583–91.PubMedCrossRefGoogle Scholar
  144. 144.
    Seeff LB, Curto TM, Szabo G, Everson GT, Bonkovsky HL, Dienstag JL, et al. Herbal product use by persons enrolled in the hepatitis C antiviral long-term treatment against cirrhosis (HALT-C) trial. Hepatology. 2008;47:605–12.PubMedCrossRefGoogle Scholar
  145. 145.
    Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett. 2008;269:352–62.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Ferenci P, Dragosics B, Dittrich H, Frank H, Benda L, Lochs H, et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol. 1989;9:105–13.PubMedCrossRefGoogle Scholar
  147. 147.
    Hawke RL, Schrieber SJ, Soule TA, Wen Z, Smith PC, Reddy KR, et al. Silymarin ascending multiple oral dosing phase I study in noncirrhotic patients with chronic hepatitis C. J Clin Pharmacol. 2010;50:434–49.PubMedCrossRefGoogle Scholar
  148. 148.
    Freedman ND, Curto TM, Morishima C, Seeff LB, Goodman ZD, Wright EC, et al. Silymarin use and liver disease progression in the hepatitis C antiviral long-term treatment against cirrhosis trial. Aliment Pharmacol Ther. 2011;33:127–37.PubMedCrossRefGoogle Scholar
  149. 149.
    Ramakrishnan G, Lo Muzio L, Elinos-Báez CM, Jagan S, Augustine TA, Kamaraj S, et al. Silymarin inhibited proliferation and induced apoptosis in hepatic cancer cells. Cell Prolif. 2009;42:229–40.PubMedCrossRefGoogle Scholar
  150. 150.
    Lah JJ, Cui W, Hu KQ. Effects and mechanisms of silibinin on human hepatoma cell lines. World J Gastroenterol. 2007;13:5299–305.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Momeny M, Khorramizadeh MR, Ghaffari SH, Yousefi M, Yekaninejad MS, Esmaeili R, et al. Effects of silibinin on cell growth and invasive properties of a human hepatocellular carcinoma cell line, HepG-2, through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Eur J Pharmacol. 2008;591:13–20.PubMedCrossRefGoogle Scholar
  152. 152.
    Varghese L, Agarwal C, Tyagi A, Singh RP, Agarwal R. Silibinin efficacy against human hepatocellular carcinoma. Clin Cancer Res. 2005;11:8441–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Wu YF, Fu SL, Kao CH, Yang CW, Lin CH, Hsu MT, et al. Chemopreventive effect of silymarin on liver pathology in HBV X protein transgenic mice. Cancer Res. 2008;68:2033–42.PubMedCrossRefGoogle Scholar
  154. 154.
    Ramakrishnan G, Augustine TA, Jagan S, Vinodhkumar R, Devaki T. Effect of silymarin on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Exp Oncol. 2007;29:39–44.PubMedGoogle Scholar
  155. 155.
    Bonifaz V, Shan Y, Lambrecht RW, Donohue SE, Moschenross D, Bonkovsky HL. Effects of silymarin on hepatitis C virus and haem oxygenase-1 gene expression in human hepatoma cells. Liver Int. 2009;29:366–73.PubMedCrossRefGoogle Scholar
  156. 156.
    Ahmed-Belkacem A, Ahnou N, Barbotte L, Wychowski C, Pallier C, Brillet R, et al. Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Gastroenterology. 2010;138:1112–22.PubMedCrossRefGoogle Scholar
  157. 157.
    Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008;269:291–304.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Pappa G, Strathmann J, Löwinger M, Bartsch H, Gerhäuser C. Quantitative combination effects between sulforaphane and 3,3′-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis. 2007;28:1471–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Park SY, Kim GY, Bae SJ, et al. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3. Oncol Rep. 2007;18:181–7.PubMedGoogle Scholar
  160. 160.
    Yeh CT, Yen GC. Effect of sulforaphane on metallothionein expression and induction of apoptosis in human hepatoma HepG2 cells. Carcinogenesis. 2005;26:2138–48.PubMedCrossRefGoogle Scholar
  161. 161.
    Moon DO, Kang SH, Kim KC, Kim MO, Choi YH, Kim GY. Sulforaphane decreases viability and telomerase activity in hepatocellular carcinoma Hep3B cells through the reactive oxygen species-dependent pathway. Cancer Lett. 2010;295:260–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Cho SD, Li G, Hu H, Jiang C, Kang KS, Lee YS, et al. Involvement of c-Jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by sulforaphane in DU145 prostate cancer cells. Nutr Cancer. 2005;52:213–24.PubMedCrossRefGoogle Scholar
  163. 163.
    Shen G, Xu C, Chen C, Hebbar V, Kong AN. p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Chemother Pharmacol. 2006;57:317–27.PubMedCrossRefGoogle Scholar
  164. 164.
    Hu C, Eggler AL, Mesecar AD, van Breemen RB. Modification of Keap1 cysteine residues by sulforaphane. Chem Res Toxicol. 2011;24:515–21.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Lee IS, Lim J, Gal J, Kang JC, Kim HJ, Kang BY, et al. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem Int. 2011;58:153–60.PubMedCrossRefGoogle Scholar
  166. 166.
    Deeb D, Gao X, Jiang H, Arbab AS, Dulchavsky SA, Gautam SC. Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells. Anticancer Res. 2010;30:3333–9.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Ho YC, Liu CH, Chen CN, Duan KJ, Lin MT. Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines. Phytother Res. 2008;22:1465–8.PubMedCrossRefGoogle Scholar
  168. 168.
    Dorn C, Weiss TS, Heilmann J, Hellerbrand C. Xanthohumol, a prenylated chalcone derived from hops, inhibits proliferation, migration and interleukin-8 expression of hepatocellular carcinoma cells. Int J Oncol. 2010;36:435–41.PubMedGoogle Scholar
  169. 169.
    Ferk F, Huber WW, Filipic M, Bichler J, Haslinger E, Misík M, et al. Xanthohumol, a prenylated flavonoid contained in beer, prevents the induction of preneoplastic lesions and DNA damage in liver and colon induced by the heterocyclic aromatic amine amino-3-methyl-imidazo[4,5-f]quinoline (IQ). Mutat Res. 2010;691:17–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Jun-ichi Okano
    • 1
  • Yuki Fujise
    • 1
  • Ryo Abe
    • 1
  • Ryu Imamoto
    • 1
  • Yoshikazu Murawaki
    • 1
  1. 1.Second Department of Internal MedicineTottori University School of MedicineYonagoJapan

Personalised recommendations