Advances in Therapy

, Volume 32, Issue 10, pp 906–919 | Cite as

Cardiac and Hemodynamic Benefits: Mode of Action of Ivabradine in Heart Failure

  • Antonio Carlos Pereira-BarrettoEmail author


Heart failure has seen a number of therapeutic advances in recent years. Despite this, heart failure is still related to increasing rates of morbidity, repeated hospitalizations, and mortality. Ivabradine is a recent treatment option for heart failure. It has a mode of action that includes reduction in heart rate, and leads to improvement in outcomes related to heart failure mortality and morbidity, as demonstrated by the results of the SHIFT trial in patients with systolic heart failure, functional classes II and III on the New York Heart Association classification, and left ventricular ejection fraction ≤35%. These results are intriguing since many heart failure drugs reduce heart rate without such benefits, or with quite different effects, making it more difficult to understand the novelty of ivabradine in this setting. Many of the drugs used in heart failure modify heart rate, but most have other pathophysiological effects beyond their chronotropic action, which affect their efficacy in preventing morbidity and mortality outcomes. For instance, heart rate reduction at rest or exercise with ivabradine prolongs diastolic perfusion time, improves coronary blood flow, and increases exercise capacity. Another major difference is the increase in stroke volume observed with ivabradine, which may underlie its beneficial cardiac effects. Finally, there is mounting evidence from both preclinical and clinical studies that ivabradine has an anti-remodeling effect, improving left ventricular structures and functions. All together, these mechanisms have a positive impact on the prognosis of ivabradine-treated patients with heart failure, making a compelling argument for use of ivabradine in combination with other treatments.




Cardiology Heart failure Heart rate Ivabradine Morbidity Mortality Stroke volume 



The article processing charges and the open access fee for this publication were funded by Laboratoires Servier, Brazil, an incorporated company of Servier. The named author meets the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this manuscript, takes responsibility for the integrity of the work as a whole, and has given final approval for the version to be published.


The author has no relevant affiliations or financial involvement with any organization or entity in conflict with the subject matter or materials discussed in the manuscript.

Compliance with ethics guidelines

This article is based on previously conducted studies and does not involve any new studies of human or animal subjects performed by the author.

Supplementary material

12325_2015_257_MOESM1_ESM.pdf (193 kb)
ESM1 (PDF 194 kb)


  1. 1.
    The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316(23):1429–35.Google Scholar
  2. 2.
    Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327(10):669–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.CrossRefPubMedGoogle Scholar
  4. 4.
    CIBIS Investigators and Committees. A randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). Circulation. 1994;90(4):1765–73.Google Scholar
  5. 5.
    Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med. 1996;334(21):1349–55.CrossRefPubMedGoogle Scholar
  6. 6.
    Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49.CrossRefPubMedGoogle Scholar
  8. 8.
    Stewart S, Ekman I, Ekman T, Oden A, Rosengren A. Population impact of heart failure and the most common forms of cancer: a study of 1162309 hospital cases in Sweden (1988 to 2004). Circ Cardiovasc Qual Outcomes. 2010;3(6):573–80.CrossRefPubMedGoogle Scholar
  9. 9.
    McMurray JJ, Pfeffer MA. Heart failure. Lancet. 2005;365(9474):1877–89.CrossRefPubMedGoogle Scholar
  10. 10.
    Swedberg K, Komajda M, Böhm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled trial. Lancet. 2010;376(9744):875–85.CrossRefPubMedGoogle Scholar
  11. 11.
    Borer JS, Bohm M, Ford I, et al. Effect of ivabradine on recurrent hospitalization for worsening heart failure in patients with chronic systolic heart failure: the SHIFT Study. Eur Heart J. 2012;33(22):2813–20.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111(21):2837–49.CrossRefPubMedGoogle Scholar
  13. 13.
    Packer M. How should physicians view heart failure? The philosophical and physiological evolution of three conceptual models of the disease. Am J Cardiol. 1993;71(9):3C–11C.CrossRefPubMedGoogle Scholar
  14. 14.
    Sandler H, Dodge HT. Left ventricular tension and stress in man. Circ Res. 1963;13:91–104.CrossRefPubMedGoogle Scholar
  15. 15.
    Hood WP Jr, Rackley CE, Rolett EL. Wall stress in the normal and hypertrophied human left ventricle. Am J Cardiol. 1968;22(4):550–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56–64.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Meerson FZ. On the mechanism of compensatory hyperfunction and insufficiency of the heart. Cor Vasa. 1961;31:61–77.Google Scholar
  18. 18.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114(5):345–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Gunther S, Grossman W. Determinants of ventricular function in pressure-overload hypertrophy in man. Circulation. 1979;59(4):679–88.Google Scholar
  21. 21.
    Huber D, Grimm J, Koch R, Krayenbuehl HP. Determinants of ejection performance in aortic stenosis. Circulation. 1981;64(1):126–34.CrossRefPubMedGoogle Scholar
  22. 22.
    Krayenbuehl HP, Hess OM, Ritter M, Monrad ES, Hoppeler H. Left ventricular systolic function in aortic stenosis. Eur Heart J. 1988;9(Suppl):E19–23.CrossRefGoogle Scholar
  23. 23.
    Katz AM. Maladaptive growth in the failing heart: the cardiomyopathy of overload. Cardiovasc Drugs Ther. 2002;16(3):245–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367(9507):356–67.CrossRefPubMedGoogle Scholar
  25. 25.
    Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348(20):2007–18.CrossRefPubMedGoogle Scholar
  26. 26.
    Klabunde RE. Cardiovascular Physiology Concepts. 2nd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2012.Google Scholar
  27. 27.
    Pereira-Barretto AC. Most heart failure patients die from pump failure. Am J Cardiovasc Drugs. 2015. (In press).Google Scholar
  28. 28.
    Heusch G, Libby P, Gersh B, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383(9932):1933–43.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Heusch G. Heart rate and heart failure. Not a simple relationship. Circ J. 2011;75(2):229–36.CrossRefPubMedGoogle Scholar
  30. 30.
    McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69.CrossRefPubMedGoogle Scholar
  31. 31.
    Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28(20):2539–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Komajda M, Lam CS. Heart failure with preserved ejection fraction: a clinical dilemma. Eur Heart J. 2014;35(16):1022–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Komamura K. Similarities and differences between the pathogenesis and pathophysiology of diastolic and systolic heart failure. Cardiol Res Pract. 2013;2013:824135.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Chatterjee K, Massie B. Systolic and diastolic heart failure: differences and similarities. J Card Fail. 2007;13(7):569–76.CrossRefPubMedGoogle Scholar
  35. 35.
    Dobre D, Borer JS, Fox K, et al. Heart rate: a prognostic factor and therapeutic target in chronic heart failure. The distinct roles of drugs with heart rate-lowering properties. Eur J Heart Fail. 2014;16(1):76–85.CrossRefPubMedGoogle Scholar
  36. 36.
    Whitbeck MG, Charnigo RJ, Khairy P, et al. Increased mortality among patients taking digoxin—analysis from the AFFIRM Study. Eur Heart J. 2013;34(20):1481–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Freeman JV, Yang J, Sung SH, Hlatky MA, Go AS. Effectiveness and safety of digoxin among contemporary adults with incident systolic heart failure. Circ Cardiovasc Qual Outcomes. 2013;6(5):525–33.CrossRefPubMedGoogle Scholar
  38. 38.
    DiFrancesco D. The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J Physiol. 1991;43423-40.Google Scholar
  39. 39.
    Meiler SE, Boudoulas H, Unverferth DV, Leier CV. Diastolic time in congestive heart failure. Am Heart J. 1987;114(5):1192–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Colin P, Ghaleh B, Monnet X, et al. Contributions of heart rate and contractility to myocardial oxygen balance during exercise. Am J Physiol Heart Circ Physiol. 2003;284(2):H676–82.CrossRefPubMedGoogle Scholar
  41. 41.
    Colin P, Ghaleh B, Hittinger L, et al. Differential effects of heart rate reduction and beta-blockade on left ventricular relaxation during exercise. Am J Physiol Heart Circ Physiol. 2002;282(2):H672–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Custodis F, Schirmer SH, Baumhakel M, Heusch G, Bohm M, Laufs U. Vascular pathophysiology in response to increased heart rate. J Am Coll Cardiol. 2010;56(24):1973–83.CrossRefPubMedGoogle Scholar
  43. 43.
    Bache RJ, Cobb FR. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res. 1977;41(5):648–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Ferro G, Duilio C, Spinelli L, Liucci GA, Mazza F, Indolfi C. Relation between diastolic perfusion time and coronary artery stenosis during stress-induced myocardial ischemia. Circulation. 1995;92(3):342–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Ferro G, Duilio C, Spinelli L, Spadafora M, Guarnaccia F, Condorelli M. Effects of beta blockade on the relation between heart rate and ventricular diastolic perfusion time during exercise in systemic hypertension. Am J Cardiol. 1991;68(10):1101–3.CrossRefPubMedGoogle Scholar
  46. 46.
    Ferro G, Spinelli L, Duilio C, Spadafora M, Guarnaccia F, Condorelli M. Diastolic perfusion time at ischemic threshold in patients with stress-induced ischemia. Circulation. 1991;84(1):49–56.CrossRefPubMedGoogle Scholar
  47. 47.
    Skalidis EI, Hamilos MI, Chlouverakis G, Zacharis EA, Vardas PE. Ivabradine improves coronary flow reserve in patients with stable coronary artery disease. Atherosclerosis. 2011;215(1):160–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Dedkov EI, Zheng W, Christensen LP, Weiss RM, Mahlberg-Gaudin F, Tomanek RJ. Preservation of coronary reserve by ivabradine-induced reduction in heart rate in infarcted rats is associated with decrease in perivascular collagen. Am J Physiol Heart Circ Physiol. 2007;293(1):H590–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Heusch G. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol. 2008;153(8):1589–601.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Monnet X, Ghaleh B, Colin P, de Curzon OP, Giudicelli JF, Berdeaux A. Effects of heart rate reduction with ivabradine on exercise-induced myocardial ischemia and stunning. J Pharmacol Exp Ther. 2001;299(3):1133–9.PubMedGoogle Scholar
  51. 51.
    Monnet X, Colin P, Ghaleh B, Hittinger L, Giudicelli JF, Berdeaux A. Heart rate reduction during exercise-induced myocardial ischaemia and stunning. Eur Heart J. 2004;25(7):579–86.CrossRefPubMedGoogle Scholar
  52. 52.
    Heusch G. Pleiotropic action(s) of the bradycardic agent ivabradine: cardiovascular protection beyond heart rate reduction. Br J Pharmacol. 2008;155(7):970–1.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Gheorghiade M, Bonow RO. Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation. 1998;97(3):282–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Ceconi C, Cargnoni A, Francolini G, Parinello G, Ferrari R. Heart rate reduction with ivabradine improves energy metabolism and mechanical function of isolated ischaemic rabbit heart. Cardiovasc Res. 2009;84(1):72–82.CrossRefPubMedGoogle Scholar
  55. 55.
    Komajda M, Hanon O, Hochadel M, et al. Contemporary management of octogenarians hospitalized for heart failure in Europe: Euro Heart Failure Survey II. Eur Heart J. 2009;30(4):478–86.CrossRefPubMedGoogle Scholar
  56. 56.
    Volterrani M, Cice G, Caminiti G, et al. Effect of Carvedilol, Ivabradine or their combination on exercise capacity in patients with heart failure (the CARVIVA HF trial). Int J Cardiol. 2011;151(2):218–24.CrossRefPubMedGoogle Scholar
  57. 57.
    Sarullo FM, Fazio G, Puccio D, et al. Impact of “off-label” use of ivabradine on exercise capacity, gas exchange, functional class, quality of life, and neurohormonal modulation in patients with ischemic chronic heart failure. J Cardiovasc Pharmacol Ther. 2010;15(4):349–55.CrossRefPubMedGoogle Scholar
  58. 58.
    Mulder P, Barbier S, Chagraoui A, et al. Long-term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation. 2004;109(13):1674–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Dillinger JG, aher V, itale C, et al. Impact of ivabradine on central aortic blood pressure and myocardial perfusion in patients with stable coronary artery disease. Hypertension. 2015. (In press).Google Scholar
  60. 60.
    De Ferrari GM, Mazzuero A, Agnesina L, et al. Favourable effects of heart rate reduction with intravenous administration of ivabradine in patients with advanced heart failure. Eur J Heart Fail. 2008;10(6):550–5.Google Scholar
  61. 61.
    Tardif JC, O’Meara E, Komajda M, et al. Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur Heart J. 2011;32(20):2507–15.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Becher PM, Lindner D, Miteva K, et al. Role of heart rate reduction in the prevention of experimental heart failure: comparison between If-channel blockade and beta-receptor blockade. Hypertension. 2012;59(5):949–57.CrossRefPubMedGoogle Scholar
  63. 63.
    Mellin V, Bauer F, Richard V, et al. Short-term heart rate reduction induced by ivabradine improves systolic and diastolic cardiac functions in post-infarcted rats with established chronic heart failure. Abstract 2441. Eur Heart J. 2007;28 (suppl):388.Google Scholar
  64. 64.
    Reil JC, Tardif JC, Ford I, et al. Selective heart rate reduction with ivabradine unloads the left ventricle in heart failure patients. J Am Coll Cardiol. 2013;62(21):1977–85.CrossRefPubMedGoogle Scholar
  65. 65.
    Bagriy AE, Schukina EV, Samoilova OV, et al. Addition of ivabradine to beta-blocker improves exercise capacity in systolic heart failure patients in a prospective, open-label study. Adv Ther. 2015;32(2):108–19.CrossRefPubMedGoogle Scholar
  66. 66.
    Zagidullin NS, Zulkarneev RH, Travnikova EO, Zagidullin SZ. Comparison of ivabradine and metoprolol tartrate impact on the heart variability in patients with angina pectoris. Cardiovascular System. 2014;2:9.Google Scholar
  67. 67.
    Speranza L, Franceschelli S, Riccioni G. The biological effects of ivabradine in cardiovascular disease. Molecules. 2012;17(5):4924–35.CrossRefPubMedGoogle Scholar
  68. 68.
    Sabbah HN, Gupta R, Wang M, et al. Heart rate reduction with ivabradine reduces activation of the renin–angiotensin–aldosterone system in dogs with chronic heart failure. J Am Coll Cardiol. 2011;57(17):E197.CrossRefGoogle Scholar
  69. 69.
    Milliez P, Messaoudi S, Nehme J, Rodriguez C, Samuel JL, Delcayre C. Beneficial effects of delayed ivabradine treatment on cardiac anatomical and electrical remodeling in rat severe chronic heart failure. Am J Physiol Heart Circ Physiol. 2009;296:H435–41.CrossRefPubMedGoogle Scholar
  70. 70.
    Ceconi C, Comini L, Suffredini S, et al. Heart rate reduction with ivabradine prevents the global phenotype of left ventricular remodeling. Am J Physiol Heart Circ Physiol. 2011;300(1):H366–73.CrossRefPubMedGoogle Scholar
  71. 71.
    Fang Y, Debunne M, Vercauteren M, et al. Heart rate reduction induced by the if current inhibitor ivabradine improves diastolic function and attenuates cardiac tissue hypoxia. J Cardiovasc Pharmacol. 2012;59(3):260–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Christensen LP, Zhang RL, Zheng W, et al. Postmyocardial infarction remodeling and coronary reserve: effects of ivabradine and beta blockade therapy. Am J Physiol Heart Circ Physiol. 2009;297(1):H322–30.PubMedGoogle Scholar
  73. 73.
    Suffredini S, Stillitano F, Comini L, et al. Long-term treatment with ivabradine in post-myocardial infarcted rats counteracts f-channel overexpression. Br J Pharmacol. 2012;165(5):1457–66.PubMedCentralCrossRefPubMedGoogle Scholar
  74. 74.
    Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. On behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569–82.CrossRefPubMedGoogle Scholar
  75. 75.
    Solomon SD, Anavekar N, Skali H, et al. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation. 2005;112(24):3738–44.CrossRefPubMedGoogle Scholar
  76. 76.
    Kleinbongard P, Gedik N, Witting P, Freedman B, Klocker N, Heusch G. Pleiotropic, heart rate-independent cardioprotection by ivabradine. Br J Pharmacol. 2015;172(17):4380–90.CrossRefPubMedGoogle Scholar
  77. 77.
    Gerbaud E, Montaudon M, Chasseriaud W, et al. Effect of ivabradine on left ventricular remodelling after reperfused myocardial infarction: a pilot study. Arch Cardiovasc Dis. 2014;107(1):33–41.CrossRefPubMedGoogle Scholar
  78. 78.
    Vercauteren M, Favre J, Mulder P, et al. Protection of endothelial function by long-term heart rate reduction induced by ivabradine in a rat model of chronic heart failure. P468. Eur Heart J. 2007;28(suppl):48.Google Scholar
  79. 79.
    Gupta RC, Wang M, Ilsar I, et al. Heart rate reduction with ivabradine improves sarcoplasmic reticulum calcium cycling in left ventricular myocardium of dogs with moderate heart failure. J Am Coll Cardiol. 2011;57(11):E323.CrossRefGoogle Scholar
  80. 80.
    Remme WJ, Riegger G, Hildebrandt P, et al. The benefits of early combination treatment of carvedilol and an ACE-inhibitor in mild Heart Failure and left ventricular systolic dysfunction. The carvedilol and ACE-inhibitor remodelling mild Heart Failure evaluation trial (CARMEN). Cardiovasc Drugs Ther. 2004;18(1):57–66.CrossRefPubMedGoogle Scholar
  81. 81.
    Jondeau G, Böhm M, Tavazzi L, et al. Hemodynamic effects of ivabradine, an agent that reduces heart rate, in patients with moderate to severe systolic heart failure receiving beta-blockers. Arch Mal Coeur Vaiss. 2008;101Abstract.Google Scholar
  82. 82.
    Busseuil D, Shi Y, Mecteau M, et al. Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology. 2010;117(3):234–42.CrossRefPubMedGoogle Scholar
  83. 83.
    Navaratnarajah M, Ibrahim M, Siedlecka U, et al. Influence of ivabradine on reverse remodelling during mechanical unloading. Cardiovasc Res. 2013;97(2):230–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Ulu N, Henning RH, Goris M, Schoemaker RG, Van Gilst WH. Effects of ivabradine and metoprolol on cardiac angiogenesis and endothelial dysfunction in rats with heart failure. J Cardiovasc Pharmacol. 2009;53(1):9–17.CrossRefPubMedGoogle Scholar
  85. 85.
    Ciobotaru V, Heimburger M, Louedec L, et al. Effect of long-term heart rate reduction by If-current inhibition on pressure-overload-induced heart failure in rats. J Pharmacol Exp Ther. 2007;324(1):43–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Healthcare 2015

Authors and Affiliations

  1. 1.Prevention and Rehabilitation Service, Heart Institute, InCorUniversity of São Paulo Medical SchoolSão PauloBrazil

Personalised recommendations