Advances in Therapy

, Volume 31, Issue 8, pp 803–816 | Cite as

Pharmacological Consequences of Inhaled Drug Delivery to Small Airways in the Treatment of Asthma

Review

Abstract

Small peripheral airways are an important target for the anti-inflammatory treatment of asthma. To make anti-inflammatory drugs (inhaled corticosteroids [ICS]) effectively reach small airways, they should be delivered using inhalation techniques containing high proportions of fine or super-fine particles. Higher proportions of fine particles are associated with higher systemic absorption of ICS leading to an increased risk of endogenous cortisol suppression. Ciclesonide, despite the highest proportion of fine and super-fine particle fractions, is the only ICS not associated with an increased risk of systemic adverse effects, including cortisol suppression. In contrary to ICS, bronchodilators should not be administered to peripheral airways. This does not improve their efficacy and may increase their risk of cardiotoxicity. Thus, from a pharmacological point of view and the theory of aerosols’ deposition, fixed combinations of ICS and long-acting beta agonists are always suboptimal. In many cases, the best solution may be to use fine-particle ciclesonide and a non-fine particle beta agonist administered from separate inhalers.

Keywords

Asthma Bronchodilators Inhaled corticosteroids Pharmacology of aerosols Pulmonary deposition Small airways Systemic bioavailability of inhaled drugs 

Supplementary material

12325_2014_143_MOESM1_ESM.pdf (193 kb)
Supplementary material 1 (PDF 193 kb)

References

  1. 1.
    Farah CS, King GG, Brown NJ, et al. The role of the small airways in the clinical expression of asthma in adults. J Allergy Clin Immunol. 2012;129:381–7.PubMedCrossRefGoogle Scholar
  2. 2.
    van der Wiel E, ten Hacken NH, Postma DS, van den Berge M. Small-airways dysfunction associates with respiratory symptoms and clinical features of asthma: a systematic review. J Allergy Clin Immunol. 2013;131:646–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Martin RJ. Therapeutic significance of distal airway inflammation in asthma. J Allergy Clin Immunol. 2002;109(Suppl 2):447–60.CrossRefGoogle Scholar
  4. 4.
    Morrison JF, Pearson SB. The parasympathetic nervous system and the diurnal variation of lung mechanics in asthma. Respir Med. 1991;85:285–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Hamid Q. Pathogenesis of small airways in asthma. Respiration. 2012;84:4–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Downie SR, Salome ChM, Verbanck S, Thompson B, Berend N, King GG. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax. 2007;62:684–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Wiggs BR, Hrousis CA, Drazen JM, Kamm RD. On the mechanism of mucosal folding in normal and asthmatic airways. J Appl Physiol. 1997;83:1814–21.PubMedGoogle Scholar
  8. 8.
    Grainge CL, Lau LC, Ward JA, et al. Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med. 2011;364:2006–15.PubMedCrossRefGoogle Scholar
  9. 9.
    Venegas JG, Winkler T, Musch G, et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature. 2005;434:777–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Gonem S, Natarajan S, Hartley R, et al. Cluster analysis reveals a distinct small airway- predominant phenotype of asthma. Thorax. 2012;67:A7.CrossRefGoogle Scholar
  11. 11.
    Weibel ER. Morphometry of the human lung. New York: Academic; 1963.CrossRefGoogle Scholar
  12. 12.
    Fal AM, Niżankowska-Mogilnicka E, Śliwiński P, Emeryk A, Antczak A, Kruszewski J. Drobne drogi oddechowe w chorobach obturacyjnych płuc. Pneumol Alergol Pol. 2012;80:146–51.Google Scholar
  13. 13.
    Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc. 2004;1:315–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Leach CL, Davidson PJ, Boudreau RJ. Improved airway targeting with the CFC-free HFA-beclomethasone metered-dose inhaler compared with CFC-beclomethasone. Eur Respir J. 1998;12:1346–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Borgstrom L. Deposition patterns with Turbuhaler. J Aerosol Med. 1994;7(Suppl 1):S49–53.PubMedGoogle Scholar
  16. 16.
    Tarsin WY, Pearson SB, Assi KH, Chrystyn H. Emitted dose estimates from Seretide Diskus and Symbicort Turbuhaler following inhalation by severe asthmatics. Int J Pharm. 2006;316:131–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Delvadia R, Hindle M, Longest PW, Byron PR. In vitro tests for aerosol deposition II: IVIVCs for different powder inhalers in normal adults. J Aero Med Pulm Drug Deliv. 2012;26:138–44.CrossRefGoogle Scholar
  18. 18.
    Tamura G, Sakae H, Fujino S. In vitro evaluation of dry powder inhaler devices of corticosteroid preparations. Allerg Int. 2012;61:149–54.CrossRefGoogle Scholar
  19. 19.
    Buhl R. Local oropharyngeal side effects of inhaled corticosteroids in patients with asthma. Allergy. 2006;61:518–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Taki M, Marriott C, Zeng XM, Martin GP. Aerodynamic deposition of combination of dry power inhaler in vitro: a comparison of three impactors. Int J Pharm. 2010;388:40–51.PubMedCrossRefGoogle Scholar
  21. 21.
    The Electronic Medicines Compendium (eMC). http://www.medicines.org.uk/emc/. Accessed July 28, 2014.
  22. 22.
    Newman SP, Pitcairn GR, Hirst PH, et al. Scintigraphic comparison of budesonide deposition from two dry powder inhalers. Eur Respir J. 2000;16:178–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Hirst PH, Bacon RE, Pitcairn GR, Silvasti M, Newman SP. A comparison of the lung deposition of budesonide from Easyhaler, Turbuhaler and pMDI plus spacer in asthmatic patients. Respir Med. 2001;95:720–7.PubMedCrossRefGoogle Scholar
  24. 24.
    De Backer W, Devolder A, Poli G, et al. Lung deposition of BDP/Formoterol HFA pMDI in healthy volunteers, asthmatic, and COPD patients. J Aerosol Med Pulm Drug Deliv. 2010;23:137–48.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Newman S, Salmon A, Nave R, Drollmann A. High lung deposition of 99mTc-labeled ciclesonide administered via HFA-MDI to patients with asthma. Respir Med. 2006;100:375–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Nave R, Mueller H. From inhaler to lung: clinical implications of the formulations of ciclesonide and other inhaled drugs. Int J Gen Med. 2013;6:99–107.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Dalby NR, Eicher J, Zierenberg B. Development of Respimat Soft Mist Inhaler and its utility in respiratory disorders. Med Devices (Auckl). 2011;4:145–55.Google Scholar
  28. 28.
    Dolovich MB, Dhand R. Aerosol drug delivery: developments in device design and clinical use. Lancet. 2011;377:1032–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Busse WW, Brazinsky S, Jacobson K, et al. Efficacy response of inhaled beclomethasone dipropionate in asthma is proportional to dose and is improved by formulation with a new propellant. J Allergy Clin Immunol. 1999;104:1215–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Harrison LI, Soria I, Cline AC, Ekholm BP. Pharmacokinetic differences between chlorofluorocarbon and chlorofluorocarbon-free metered dose inhalers of beclomethasone dipropionate in adult asthmatics. J Pharm Pharmacol. 1999;51:1235–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin RJ, Szefler SJ, Chinchilli VM, et al. Systemic effect comparisons of six inhaled corticosteroid preparations. Am J Respir Crit Care Med. 2002;165:1377–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Thompson PJ, Davies RJ, Young WF, Grossman AB, Donnell D. Safety of hydrofluoroalkane-134a beclomethasone dipropionate extrafine aerosol. Respir Med. 1998;92(Suppl A):33–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Lipworth BJ. The comparative safety/efficacy ratio of HFA-BDP. Respir Med. 2000;94(Suppl D):S21–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Derendorf H. Pharmacokinetic and pharmacodynamic properties of inhaled corticosteroids in relation to efficacy and safety. Respir Med. 1997;91(Suppl A):22–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Derendorf H, Hochhaus G, Meibohm B, Möllmann H, Barth J. Pharmacokinetics and pharmacodynamics of inhaled corticosteroids. J Allergy Clin Immunol. 1998;101:S440–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Hubner M, Hochhaus G, Derendorf H. Comparative pharmacology, bioavailability, pharmacokinetics, and pharmacodynamics of inhaled glucocorticoids. Immunol Allergy Clin North Am. 2005;25:469–88.PubMedCrossRefGoogle Scholar
  37. 37.
    Webner B, Hochhaus G. A pharmacokinetic simulation tool for inhaled corticosteroids. AAPS J. 2013;15:159–71.CrossRefGoogle Scholar
  38. 38.
    Freiwald M, Valotis A, Kirschbaum A, et al. Monitoring the initial pulmonary absorption of two different beclomethasone dipropionate aerosols employing a human lung reperfusion model. Respir Res. 2005;6:21.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Dekhuijzen PN, Honour JW. Inhaled corticosteroids and the hypothalamic-pituitary-adrenal (HPA) axis: do we understand their interaction? Respir Med. 2000;94:627–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Mulrennan SA, Hogg JS, Teoh RC, Morice AH. Adrenal axis suppression unrelated to the dynamics of dosing with beclomethasone monopropionate. Br J Clin Pharmacol. 2006;63:288–91.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Fowler SJ, Orr LC, Wilson AM, Sims EJ, Lipworth BJ. Dose-response for adrenal suppression with hydrofluoroalkane formulations of fluticasone propionate and beclomethasone dipropionate. J Clin Pharmacol. 2001;52:93–5.CrossRefGoogle Scholar
  42. 42.
    Agertoft L, Laulund LW, Harrison LI, Pedersen S. Influence of particle size on lung deposition and pharmacokinetics of beclomethasone dipropionate in children. Pediatr Pulmonol. 2003;35:192–9.PubMedCrossRefGoogle Scholar
  43. 43.
    GINA—Global initiative for asthma. http://www.ginasthma.org/. Accessed July 28, 2014.
  44. 44.
    Van Schayck CP, Donnell D. The efficacy and safety of QVAR (hydrofluoroalkane-beclometasone dipropionate extrafine aerosol) in asthma (part 1): an update of clinical experience in adults. Int J Clin Pract. 2004;58:678–88.PubMedCrossRefGoogle Scholar
  45. 45.
    Van Schayck CP, Donnell D. The efficacy and safety of QVAR (hydrofluoroalkane-beclometasone dipropionate extrafine aerosol) in asthma (part 2): an update of clinical experience in children. Int J Clin Pract. 2004;58:786–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Currie GP, Fowler SJ, Wilson AM, Sims EJ, Orr LC, Lipworth BJ. Airway and systemic effects of hydrofluoroalkane fluticasone and beclomethasone in patients with asthma. Thorax. 2002;57:865–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Rohatagi S, Arya V, Zech K, et al. Population pharmacokinetics and pharmacodynamics of ciclesonide. J Clin Pharmacol. 2003;43:365–78.PubMedCrossRefGoogle Scholar
  48. 48.
    Rohatagi S, Appajosyula S, Derendorf H, et al. Risk-benefit value of inhaled glucocorticoids: a pharmacokinetic/pharmacodynamic perspective. J Clin Pharmacol. 2004;44:37–47.PubMedCrossRefGoogle Scholar
  49. 49.
    Rohatagi S, Luo Y, Shen L, et al. Protein binding and its potential for eliciting minimal side effects with a novel inhaled corticosteroid, ciclesonide. Am J Ther. 2005;12:201–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Xu J, Nave R, Lahu G, Derom E, Derendorf H. Population pharmacokinetics and pharmacodynamics of inhaled ciclesonide and fluticasone propionate in patients with persistent asthma. J Ciln Pharmacol. 2010;50:1118–27.CrossRefGoogle Scholar
  51. 51.
    Winkler J, Hochaus G, Derendorf H. How the lung handles drugs: pharmacokinetics and pharmacodynamics of inhaled corticosteroids. Proc Am Thorac Soc. 2004;1:356–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Szefler S, Rohatagi S, Williams J, Lloyd M, Kundu S, Banerji D. Ciclesonide, a novel inhaled steroid, does not affect hypothalamic-pituitary-adrenal axis function in patients with moderate-to-severe persistent asthma. Chest. 2005;128:1104–14.PubMedCrossRefGoogle Scholar
  53. 53.
    Bateman ED. Efficacy and safety of high-dose ciclesonide for the treatment of severe asthma. Expert Rev Respir Med. 2013;7:339–48.PubMedCrossRefGoogle Scholar
  54. 54.
    Gentile DA, Skoner DP. New asthma drugs: small molecule inhaled corticosteroids. Curr Opin Pharmacol. 2010;10:260–5.PubMedCrossRefGoogle Scholar
  55. 55.
    van den Berge M, ten Hacken NH, van der Wiel E, Postma DS. Treatment of the bronchial tree from beginning to end: targeting small airway inflammation in asthma. Allergy. 2013;68:16–26.PubMedCrossRefGoogle Scholar
  56. 56.
    Howarth PH. Why particle size should affect clinical response to inhaled therapy. J Aerosol Med. 2001;14(Suppl 1):S27–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Zanen P, Go LT, Lammers JW. Optimal particle size for beta 2 agonist and anticholinergic aerosols in patients with severe airflow obstruction. Thorax. 1996;51:977–80.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of β2-agonist particle size. Am J Respir Crit Care Med. 2005;172:1497–504.PubMedCrossRefGoogle Scholar
  59. 59.
    Warnier MJ, Rutten FH, Kors JA, et al. Cardiac arrhythmias in adult patients with asthma. J Asthma. 2012;49:942–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Desantiago J, Ai X, Islam M, et al. Arrhythmogenic effects of beta2-adrenergic stimulation in the failing heart are attributable to enhanced sarcoplasmic reticulum Ca load. Circ Res. 2008;102:1389–97.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Singh S, Loke YK, Enright P, Furberg CD. Pro-arrhythmic and pro-ischemic effects of inhaled anticholinergic medications. Thorax. 2013;68:114–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Singh S, Loke YK, Enright PL, Furberg CD. Mortality associated with tiotropium mist inhaler in patients with chronic obstructive pulmonary disease: systematic review and meta-analysis of randomized controlled trials. BMJ. 2011;342:d3215.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Mathioudakis AG, Mathioudakis GA. Tiotropium inhaler devices: seeking convenience when mortality is at stake? J Aerosol Med Pulm Drug Deliv. 2013;26:120.PubMedCrossRefGoogle Scholar
  64. 64.
    Wise RA, Anzueto A, Cotton D, et al. Tiotropium respimat inhaler and the risk of death in COPD. N Engl J Med. 2013;369:1491–501.PubMedCrossRefGoogle Scholar
  65. 65.
    Salpeter SR, Wall AJ, Buckley NS. Long-acting Beta-agonists with and without inhaled corticosteroids and catastrophic asthma events. Am J Med. 2010;123:322–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Breekveldt-Postma NS, Koerselman J, Erkens JA, et al. Treatment with inhaled corticosteroids in asthma is too often discontinued. Pharmacoepidemiol Drug Saf. 2008;17:411–22.PubMedCrossRefGoogle Scholar
  67. 67.
    Perrin K, Williams M, Wijesinghe M, James K, Weatherall M, Beasley R. Randomized controlled trial of adherence with single or combination inhaled corticosteroid/long-acting β-agonist inhaler therapy in asthma. J Allergy Clin Immunol. 2010;126:505–10.PubMedCrossRefGoogle Scholar
  68. 68.
    Paggiaro P, Nicolini G, Papi A. Extrafine beclomethasone dipropionate/formoterol hydrofluoroalkane-propelled inhaler in asthma. Expert Rev Resp Med. 2008;292:161–6.CrossRefGoogle Scholar
  69. 69.
    Häussermann S, Acerbi D, Brand P, et al. Lung deposition of formoterol HFA (Atimos®/Forair®) in healthy volunteers, asthmatic and COPD patients. J Aerosol Med. 2007;20:331–41.PubMedCrossRefGoogle Scholar
  70. 70.
    Bremner P, Woodman K, Burgess C, et al. A comparison of the cardiovascular and metabolic effects of formoterol, salbutamol and fenoterol. Eur Respir J. 1993;6:204–10.PubMedGoogle Scholar
  71. 71.
    O’Connor BJ, Kilfeather S, Cheung D, et al. Efficacy and safety of ciclesonide in patients with severe asthma: a 12-week, double-blind, randomized, parallel-group study with long-term (1-year) follow-up. Expert Opin Pharmacother. 2010;11:2791–803.PubMedCrossRefGoogle Scholar
  72. 72.
    Cohen J, Postma DS, Douma WR, Vonk JM, De Boer AH, ten Hacken NH. Particle size matters: diagnostics and treatment of small airways involvement in asthma. Eur Respir J. 2011;37:532–40.PubMedCrossRefGoogle Scholar
  73. 73.
    Hoshino M. Comparison of effectiveness in ciclesonide and fluticasone propionate on small airway function in mild asthma. Allergol Int. 2010;59:59–66.PubMedCrossRefGoogle Scholar
  74. 74.
    Derom E, Louis R, Tiesler C, Engelstätter R, Kaufman JM, Joos GF. Effects of ciclesonide and fluticasone on cortisol secretion in patients with persistent asthma. Eur Respir J. 2009;33:1277–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Healthcare 2014

Authors and Affiliations

  1. 1.Clinical Department of Allergic and Internal DiseasesMedical University of BiałystokBialystokPoland
  2. 2.Takeda PolskaWarsawPoland

Personalised recommendations