Advances in Therapy

, Volume 29, Issue 9, pp 799–814 | Cite as

SWAAT Study: Extracorporeal Shock Wave Therapy and Arginine Supplementation and Other Nutraceuticals for Insertional Achilles Tendinopathy

  • Angela NotarnicolaEmail author
  • Vito Pesce
  • Giovanni Vicenti
  • Silvio Tafuri
  • Maria Forcignanò
  • Biagio Moretti
Original Research



Extracorporeal shockwave therapy (ESWT) produces good results in the treatment of insertional Achilles tendinopathy. The efficacy of combined administration of dietary supplements with ESWT has not yet been studied.


In this prospective, randomized clinical trial, Shock Waves therapy and Arginine for Achilles Tendinopathy (SWAAT), subjects affected by insertional Achilles tendinopathy were enrolled. Between January and October 2011, all participants underwent three sessions of ESWT. In addition, the patients in the experimental group received a daily dietary supplement containing arginine, Vinitrox (Bio Serae Laboratories SAS, Bram, France), collagen, methyl-sulfonyl-methane, vitamin C, and bromelain, while the control group patients received placebo.


There was no statistically significant difference in the visual analog scale (VAS) score between the two groups at 2 months (3.9 vs. 5.1; P = 0.07), whereas at 6 months the value was significantly lower in the experimental group (2.0 vs. 2.9; P = 0.04). The difference in the Ankle-Hindfoot Scale score at 2 and 6 months of follow-up (FU) was significantly in favor of the experimental group (2 months: 85.4 vs. 72.1; P = 0.0035; 6 months: 92.4 vs. 76.5; P = 0.0002). The Roles and Maudsley score also showed a statistically significant difference between the two groups in favor of the experimental arm as regards patient satisfaction (at 2 months: 1.7 vs. 2.8; P < 0.0001; at 6 months: 1.5 vs. 2.3; P < 0.001). There was a statistically significant reduction in tissue oximetry values compared to baseline in both treatment groups at 2 and 6 months of FU. Comparing the groups, only at the last FU, at 6 months, was a significantly lower oximetry value observed in the experimental group versus controls (60.2 vs. 66.0; P = 0.007).


On the basis of the results obtained in this study, the authors conclude that in the treatment of insertional Achilles tendinopathy, ESWT induces a hemodynamic re-equilibrium with an in tendon trophism. The addition of specific dietary supplements could improve the therapeutic response.


Achilles tendinopathy Dietary supplements Extracorporeal shockwave therapy Shock waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clement DB, Taunton JE, Smart GW. Achilles tendinitis and peritendinitis: etiology and treatment. Am J Sports Med. 1984;12:179–184.PubMedCrossRefGoogle Scholar
  2. 2.
    Alvarez-Nemegyei J, Canoso JJ. Heel pain: diagnosis and treatment, step by step. Cleve Clin J Med. 2006;73:465–471.PubMedCrossRefGoogle Scholar
  3. 3.
    Benjamin M, Moriggl B, Brenner E, Emery P, McGonagle D, Redman S. The “enthesis organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum. 2004;50:3306–3313.PubMedCrossRefGoogle Scholar
  4. 4.
    Abate M, Silbernagel KG, Siljeholm C, et al. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther. 2009;11:235.PubMedCrossRefGoogle Scholar
  5. 5.
    IPG312 Extracorporeal shockwave therapy for refractory Achilles tendinopathy: guidance 07 April 2011. Available at: Accessed Jul 25 2012
  6. 6.
    Fahlstrom M, Jonsson P, Lorentzon R, Alfredson H. Cronic Achilles pain treated with eccentric calf muscle training. Knee Sports Surg Traumatol Arthrosc. 2003;11:327–333.CrossRefGoogle Scholar
  7. 7.
    Kearney R, Costa ML. Insertional Achilles tendinopathy management: a systematic review. Foot Ankle Int. 2010;31:689–694.PubMedCrossRefGoogle Scholar
  8. 8.
    Mitchell AW, Lee JC, Healy JC. The use of ultrasound in the assessment and treatment of Achilles tendinosis. J Bone Joint Surg Br. 2009;91:1405–1409.PubMedGoogle Scholar
  9. 9.
    Lake JE, Ishikawa SN. Conservative treatment of Achilles tendinopathy: emerging techniques. Foot Ankle Clin. 2009;14:663–674.PubMedCrossRefGoogle Scholar
  10. 10.
    Tumilty S, Munn J, McDonough S, Hurley DA, Basford JR, Baxter GD. Low level laser treatment of tendinopathy: a systematic review with metaanalysis. Photomed Laser Surg. 2010;28:3–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Clancy W. Prevention and Treatment of Running Injuries. New Jersey: Stack; 1982:77–83.Google Scholar
  12. 12.
    Furia JP. High energy extracorporal shock wave therapy as a treatment for insertional Achilles tendinopathy. Am J Sports Med. 2006;34:733–740.PubMedCrossRefGoogle Scholar
  13. 13.
    Vulpiani MC, Trischitta D, Trovato P, Vetrano M, Ferretti A. Extracorporeal shockwave therapy (ESWT) in Achilles tendinopathy. A long-term follow-up observational study. J Sports Med Phys Fitness. 2009;49:171–176.PubMedGoogle Scholar
  14. 14.
    Maier M, Averbeck B, Milz S, Refior HJ, Schmitz C. Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin Orthop Relat Res. 2003;406:237–245.PubMedCrossRefGoogle Scholar
  15. 15.
    Moretti B, Iannone F, Notarnicola A, et al. Extracorporeal shock waves down-regulate the expression of interleukin-10 and tumor necrosis factor-alpha in osteoarthritic chondrocytes. BMC Musculoskelet Disord. 2008;9:16.PubMedCrossRefGoogle Scholar
  16. 16.
    Bosch G, de Mos M, van Binsbergen R, van Schie HT, van de Lest CH, van Weeren PR. The effect of focused extracorporeal shock wave therapy on collagen matrix and gene expression in normal tendons and ligaments. Equine Vet J. 2009;41:335–341.PubMedCrossRefGoogle Scholar
  17. 17.
    Ma HZ, Zeng BF, Li XL. Upregulation of VEGF in subchondral bone of necrotic femoral heads in rabbits with use of extracorporeal shock waves. Calcif Tissue Int. 2007;81:124–131.PubMedCrossRefGoogle Scholar
  18. 18.
    Aiyegbusi AI, Duru FI, Awelimobor D, Noronha CC, Okanlawon AO. The role of aqueous extract of pineapple fruit parts on the healing of acute crush tendon injury. Nig Q J Hosp Med. 2010;20:223–227.PubMedCrossRefGoogle Scholar
  19. 19.
    Bokhari AR, Murrell GA. The role of nitric oxide in tendon healing. Shoulder Elbow Surg. 2012;21:238–244.CrossRefGoogle Scholar
  20. 20.
    Shakibaei M, Buhrmann C, Mobasheri A. Antiinflammatory and anti-catabolic effects of TENDOACTIVEon human tenocytes in vitro. Histol Histopathol. 2011;26:1173–1185.PubMedGoogle Scholar
  21. 21.
    Akazome Y. Characteristics and physiological functions of polyphenols from apples. Biofactors. 2004;22:311–314.PubMedCrossRefGoogle Scholar
  22. 22.
    Klein MB, Yalamanchi N, Pham H, Longaker MT, Chang J. Flexor tendon healing in vitro: effects of TGF-beta on tendon cell collagen production. J Hand Surg Am. 2002;27:615–620.PubMedCrossRefGoogle Scholar
  23. 23.
    Ebisuzaki K. Aspirin and methylsulfonylmethane (MSM): a search for common mechanisms, with implications for cancer prevention. Anticancer Res. 2003;23:453–458.PubMedGoogle Scholar
  24. 24.
    Omerolu S, Peker T, Türközkan N, Omerolu H. High-dose vitamin C supplementation accelerates the Achilles tendon healing in healthy rats. Arch Orthop Trauma Surg. 2009;129:281–286CrossRefGoogle Scholar
  25. 25.
    Williams JG. Achilles tendon lesions in sport. Sports Med. 1986;3:114–135.PubMedCrossRefGoogle Scholar
  26. 26.
    Maffulli N, Kenward MG, Testa V, Capasso G, Regine R, King JB. Clinical diagnosis of Achilles tendinopathy with tendinosis. Clin J Sport Med. 2003;13:11–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Tiele R. New guidelines for ESWT. Newsletter ISMST 2009;5:20. Available at: Accessed Jul 25 2012Google Scholar
  28. 28.
    Myles PS, Troedel S, Boquest M, Reeves M. The pain visual analog scale: is it linear or nonlinear? Anesth Analg. 1999;89:1517–1520.PubMedGoogle Scholar
  29. 29.
    Kitaoka HB, Alexander IJ, Adelaar RS, et al. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int. 1994;15:349–353.PubMedGoogle Scholar
  30. 30.
    Roles NC, Maudsley RH. Radial tunnel syndrome: resistant tennis elbow as a nerve entrapment. J Bone Joint Surg Br. 1972;54:499–508.PubMedGoogle Scholar
  31. 31.
    Fassiadis N, Zayed H, Rashid H, Green DW. Invos cerebral oximeter compared with the transcranial Doppler for monitoring adequacy of cerebral perfusion in patients undergoing carotid endarterectomy. Int Angiol. 2006;25:401–406.PubMedGoogle Scholar
  32. 32.
    Spencer CT, Bryant RM, Byrne B, Heal E, Margossian R, Cade WT. Pediatric congenital and acquired heart disease: What else is new? Impaired skeletal muscle oxygen utilization contributes to exercise intolerance in Barth Syndrome. Circulation 2007;116:II–615. Abstract 2769.CrossRefGoogle Scholar
  33. 33.
    Farrar JT, Young JP Jr, LaMoreaux L, Werth JL, Poole RM. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94:149–158.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaux JF, Forthomme B, Le Goff C, Crielaard JM, Croisier JL. Current opinions of tendinopathy. J Sports Sci Med. 2011;10:238–253.Google Scholar
  35. 35.
    Rompe JD, Furia J, Maffulli N. Eccentric loading versus eccentric loading plus shock-wave treatment for midportion Achilles tendinopathy: a randomized controlled trial. Am J Sports Med. 2009;37:463–470.PubMedCrossRefGoogle Scholar
  36. 36.
    Ohberg L, Alfredson H. Effects on neovascularisation behind the good results with eccentric training in chronic Achilles tendinosis? Knee Surg Sports Traumatol Arthrosc. 2004;12:465–470.PubMedCrossRefGoogle Scholar
  37. 37.
    Costa ML, Shepstone L, Donell ST, Thomas TL. Shock wave therapy for chronic Achilles tendon pain: a randomized placebo-controlled trial. Clin Orthop Relat Res. 2005;440:199–204.PubMedCrossRefGoogle Scholar
  38. 38.
    Knobloch K. The role of tendon microcirculation in Achilles and patellar tendinopathy. J Orthop Surg Res. 2008;30:18.CrossRefGoogle Scholar
  39. 39.
    Andersson G, Danielson P, Alfredson H, Forsgren S. Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon. Regul Pept. 2008;150:81–87.PubMedCrossRefGoogle Scholar
  40. 40.
    Pufe T, Petersen WJ, Mentlein R, Tillmann BN. The role of vasculature and angiogenesis for the pathogenesis of degenerative tendons disease. Scand J Med Sci Sports. 2005;15:211–222.PubMedCrossRefGoogle Scholar
  41. 41.
    Ogden JA, Alvarez RG, Marlow M. Shockwave therapy for chronic proximal plantar fasciitis: a meta-analysis. Foot Ankle Int. 2002;23:301–308.PubMedGoogle Scholar
  42. 42.
    Gerdesmeyer L, Wagenpfeil S, Haake M, et al. Extracorporeal shock wave therapy for the treatment of chronic calcifying tendonitis of the rotator cuff: a randomized controlled trial. JAMA. 2003;290:2573–2580.PubMedCrossRefGoogle Scholar
  43. 43.
    Staples MP, Forbes A, Ptasznik R, Gordon J, Buchbinder R. A randomized controlled trial of extracorporeal shock wave therapy for lateral epicondylitis (tennis elbow). J Rheumatol. 2008;35:2038–2046.PubMedGoogle Scholar
  44. 44.
    Chen YJ, Wang CJ, Yang KD, et al. Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression. J Orthop Res. 2004;22:854–861.PubMedCrossRefGoogle Scholar
  45. 45.
    Vetrano M, d’Alessandro F, Torrisi MR, Ferretti A, Vulpiani MC, Visco V. Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes. Knee Surg Sports Traumatol Arthrosc. 2011;19:2159–2168.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang CJ, Wang FS, Yang KD, et al. Shock wave therapy induces neovascularization at the tendonbone junction. A study in rabbits. J Orthop Res. 2003;21:984–989.PubMedCrossRefGoogle Scholar
  47. 47.
    Kannus P, Jozsa, L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991;73:1507–1525.PubMedGoogle Scholar
  48. 48.
    Kvist M. Achilles tendon injuries in athletes. Ann Chir Gynaecol. 1991;80:188–201.PubMedGoogle Scholar
  49. 49.
    Alfredson H, Ohberg L. Increased intratendinous vascularity in the early period after sclerosing injection treatment in Achilles tendinosis. A healing response? Knee Surg Sports Traumatol Arthrosc. 2006;14:399–401.PubMedCrossRefGoogle Scholar
  50. 50.
    Astrom M, Svensson H. Tendon blood flow assessed by laser Doppler flowmetry. Scand J Plast Reconstr Surg Hand Surg. 1991;25:213–215.PubMedCrossRefGoogle Scholar
  51. 51.
    Schultz RJ, Krishnamurthy S, Thelmo W, Rodriguez JE, Harvey G. Effects of varying intensities of laser energy on articular cartilage: A preliminary study. Lasers Surg Med. 1985;5:577–588.PubMedCrossRefGoogle Scholar
  52. 52.
    Shalabi A, Movin T, Krisstoffersen-Wiberg M, Aspelin P, Svensson L. Reliability in the assessment of tendon volume and intratendinous signal of the Achilles tendon on MRI: A methodological description. Knee Surg Sports Traumatol Arthrosc. 2005;13:492–498.PubMedCrossRefGoogle Scholar
  53. 53.
    Ohberg L, Lorentzon R, Alfredson H. Neovascularisation in Achilles tendons with painful tendinosis but not in normal tendons: an ultrasonographic investigation. Knee Surg Sports Traumatol Arthrosc. 2001;9:233–238.PubMedCrossRefGoogle Scholar
  54. 54.
    Alfredson H, Forsgren S, Thorsen K, et al. Glutamate NMDAR1 receptors localised to nerves in human Achilles tendons. Implications for treatment? Knee Surg Sports Traumatol Arthrosc. 2001;9:123–126.PubMedCrossRefGoogle Scholar
  55. 55.
    Alfredson H, Ohberg L, Forsgren S. Is vasculo neural ingrowth the cause of pain in chronic Achilles tendinosis? An investigation using ultrasonography and colour Doppler, immunohistochemistry, and diagnostic injections. Knee Surg Sports Traumatol Arthrosc. 2003;11:334–338.PubMedCrossRefGoogle Scholar
  56. 56.
    Ohberg L, Alfredson H. Sclerosing therapy in chronic Achilles tendon insertional pain — results of a pilot study. Knee Surg Sports Traumatol Arthrosc. 2003;11:339–343.PubMedCrossRefGoogle Scholar
  57. 57.
    Voelckel S, Bodner G, Voelckel W, Stadlwieser C, De Koekkoek P, Springer P. Doppler ultrasound determination of vascular resistance in arteriovenous shunts of the finger tip. Ultraschall Med. 1998;19:181–186.PubMedCrossRefGoogle Scholar
  58. 58.
    Newman JS, Adler RS, Bude RO, Rubin JM: Detection of soft-tissue hyperemia: Value of power Doppler sonography. AJR Am J Roentgenol. 1994;163:385–389.PubMedGoogle Scholar
  59. 59.
    Eriksson R, Persson HW, Dymling SO, Lindstrom K. Evaluation of Doppler ultrasound for blood perfusion measurements. Ultrasound Med Biol. 1991;17:445–452.PubMedCrossRefGoogle Scholar
  60. 60.
    Notarnicola A, Moretti L, Tafuri S, Forcignanò M, Pesce V, Moretti B. Reduced local perfusion after shock wave treatment of rotator cuff tendinopathy. Ultrasound Med Biol. 2011;37:417–425.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Healthcare 2012

Authors and Affiliations

  • Angela Notarnicola
    • 1
    Email author
  • Vito Pesce
    • 1
  • Giovanni Vicenti
    • 1
  • Silvio Tafuri
    • 2
  • Maria Forcignanò
    • 1
  • Biagio Moretti
    • 1
  1. 1.Department of Neuroscience and Organs of Sense, Orthopedics SectionFaculty of Medicine and Surgery of University of BariBariItaly
  2. 2.Department of Biomedical Sciences, Hygiene SectionUniversity of Bari, General HospitalBariItaly

Personalised recommendations