Advertisement

Advances in Therapy

, Volume 29, Issue 9, pp 736–746 | Cite as

Effects on Lipid Profile of Dipeptidyl Peptidase 4 Inhibitors, Pioglitazone, Acarbose, and Sulfonylureas: Meta-analysis of Placebo-Controlled Trials

  • Matteo Monami
  • Valentina Vitale
  • Maria Luisa Ambrosio
  • Nadia Bartoli
  • Giulia Toffanello
  • Benedetta Ragghianti
  • Francesca Monami
  • Niccolò Marchionni
  • Edoardo Mannucci
Review

Abstract

Introduction

Lipid profile is an important determinant of cardiovascular risk in type 2 diabetes. It is well known that patients with type 2 diabetes are more likely to be dyslipidemic than the general population. Given the observed connection between glucose and lipid metabolism in patients with type 2 diabetes, it is conceivable that different glucose-lowering agents can have a varying impact on the lipid profile. When metformin monotherapy fails, other drugs can be added to achieve sufficient glycemic control. Available oral agents include pioglitazone, acarbose, dipeptidyl peptidase 4 (DPP-4) inhibitors, and insulin secretagogs. The present meta-analysis was designed to assess the effect of DPP-4 inhibitors, pioglitazone, insulin secretagogs, and acarbose on blood lipids when compared to placebo.

Methods

An extensive search (any date up to November 1, 2011) was performed for all trials performed on the following classes of drugs: gliptin, insulin secretagogs, pioglitazone, and acarbose. The following endpoints were considered: endpoint total, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) and triglycerides.

Results

The difference in mean total cholesterol values at endpoint versus baseline was significantly higher in patients on pioglitazone, sulfonylureas, and DPP-4 inhibitor treatment (but not on acarbose) than those on placebo, demonstrating that treatment with these drugs (except acarbose) is associated with a significant reduction in total cholesterol. With respect to triglycerides, a significant reduction could be observed with acarbose, pioglitazone, and DPP-4 inhibitors, but not with sulfonylureas. HDL-C appeared to be increased by treatment with acarbose and pioglitazone, and decreased by sulfonylureas.

Conclusion

The present meta-analysis shows that available glucose-lowering drugs may have varying effects on the lipid profile. DPP-4 inhibitors, acarbose, and pioglitazone seem to have a more favorable effect on the lipid profile than sulfonylureas.

Keywords

Acarbose Dipeptidyl peptidase 4 inhibitor Lipid profile Pioglitazone Sulfonylureas Type 2 diabetes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avogaro A, Giorda C, Maggini M, et al. Incidence of coronary heart disease in type 2 diabetic men and women: impact of microvascular complications, treatment, and geographic location. Diabetes Care. 2007;30:1241–1247.PubMedCrossRefGoogle Scholar
  2. 2.
    Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–591.PubMedCrossRefGoogle Scholar
  3. 3.
    American Diabetes Association. Standards of Medical Care in Diabetes 2012. Available at: care.diabetesjournals.org/content/35/Supplement_1/S11.full.pdf+html. Accessed Jan 1 2012.
  4. 4.
    International Diabetes Federation. Guide for Guidelines. Available at: www.idf.org/webdata/docs/Guide-for-Guidelines.pdf. Accessed Jan 1 2012.
  5. 5.
    Societa Italiana de Diabetologia. Guidelines [in Italian]. Available at: www.siditalia.it/pubblicazioni/linee-guida.html. Accessed Jan 1 2012.
  6. 6.
    Tan CE, Chew LS, Chio LF et al. Cardiovascular risk factors and LDL subfraction profile in type 2 diabetes mellitus subjects with good glycaemic control. Diabetes Res Clin Pract. 2001;51:107–114.PubMedCrossRefGoogle Scholar
  7. 7.
    Duvillard L, Pont F, Florentin E, Galland-Jos C, Gambert P, Verges B. Metabolic abnormalities of apolipoprotein B-containing lipoproteins in noninsulin- dependent diabetes: a stable isotope kinetic study. Eur J Clin Invest. 2000;30:685–694.PubMedCrossRefGoogle Scholar
  8. 8.
    Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals: does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA. 1990;263:2893–2898.PubMedCrossRefGoogle Scholar
  9. 9.
    Verges BL. Dyslipidaemia in diabetes mellitus. Review of the main lipoprotein abnormalities and their consequences on the development of atherogenesis. Diabetes Metab. 1999;25(Suppl. 3):32–40.PubMedGoogle Scholar
  10. 10.
    Derosa G, Salvadeo SA. Pioglitazone and rosiglitazone: effects of treatment with a thiazolidinedione on lipids and non conventional cardiovascular risk factors. Curr Clin Pharmacol. 2008;3:77–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Wulffelé MG, Kooy A, de Zeeuw D, Stehouwer CD, Gansevoort RT. The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: a systematic review. J Intern Med. 2004;256:1–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Rosenstock J, Kim SW, Baron MA et al. Efficacy and tolerability of initial combination therapy with vildagliptin and pioglitazone compared with component monotherapy in patients with type 2 diabetes. Diabetes Obes Metab. 2007;9:175–185.PubMedCrossRefGoogle Scholar
  13. 13.
    Scott R, Loeys T, Davies MJ, Engel SS. Efficacy and safety of sitagliptin when added to ongoing metformin therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2008;10:959–969.PubMedCrossRefGoogle Scholar
  14. 14.
    Monami M, Lamanna C, Desideri CM, Mannucci E. DPP-4 inhibitors and lipids: systematic review and meta-analysis. Adv Ther. 2012;29:14–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Aschner P, Katzeff HL, Guo H, Sunga S, et al. Efficacy and safety of monotherapy of sitagliptin compared with metformin in patients with type 2 diabetes. Diabetes Obes Metab. 2010;12:252–261.PubMedCrossRefGoogle Scholar
  16. 16.
    Buse JB, Tan MH, Prince MJ, Erickson PP. The effects of oral anti-hyperglycaemic medications on serum lipid profiles in patients with type 2 diabetes. Diabetes Obes Metab. 2004;6:133–156.PubMedCrossRefGoogle Scholar
  17. 17.
    Chiasson JL, Josse RG, Gomis R, et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003;290:486–494.PubMedCrossRefGoogle Scholar
  18. 18.
    Eleftheriadou I, Grigoropoulou P, Katsilambros N, Tentolouris N. The effects of medications used for the management of diabetes and obesity on postprandial lipid metabolism. Curr Diabetes Rev. 2008;4:340–356.PubMedCrossRefGoogle Scholar
  19. 19.
    Mori Y, Itoh Y, Obata T, Tajima N. Effects of pioglitazone vs glibenclamide on postprandial increases in glucose and triglyceride levels and on oxidative stress in Japanese patients with type 2 diabetes. Endocrine. 2006;29:143–148.PubMedCrossRefGoogle Scholar
  20. 20.
    Araki T, Emoto M, Konishi T et al. Glimepiride increases high-density lipoprotein cholesterol via increasing adiponectin levels in type 2 diabetes mellitus. Metabolism. 2009;58:143–148.PubMedCrossRefGoogle Scholar
  21. 21.
    Monami M, Lamanna C, Marchionni N, Mannucci E. Comparison of different drugs as add-on treatments to metformin in type 2 diabetes: a metaanalysis. Diabetes Res Clin Pract. 2008;79:196–203.PubMedCrossRefGoogle Scholar
  22. 22.
    Phung OJ, Scholle JM, Talwar M, Coleman CI. Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA. 2010;303:1410–1418.PubMedCrossRefGoogle Scholar
  23. 23.
    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–269.PubMedGoogle Scholar
  24. 24.
    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–1101.PubMedCrossRefGoogle Scholar
  25. 25.
    Egger M, Davey SG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.PubMedCrossRefGoogle Scholar
  26. 26.
    Coniff RF, Shapiro JA, Seaton TB, Bray GA. Multicenter, placebo-controlled trial comparing acarbose (BAY g 5421) with placebo, tolbutamide, and tolbutamide-plus-acarbose in non-insulindependent diabetes mellitus. Am J Med. 1995;98:443–451.PubMedCrossRefGoogle Scholar
  27. 27.
    DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995;333:541–549.PubMedCrossRefGoogle Scholar
  28. 28.
    Horton ES, Whitehouse F, Ghazzi MN, Venable TC, Whitcomb RW. Troglitazone in combination with sulfonylurea restores glycemic control in patients with type 2 diabetes. Diabetes Care. 1998;21:1462–1469.PubMedCrossRefGoogle Scholar
  29. 29.
    Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–1289.PubMedCrossRefGoogle Scholar
  30. 30.
    Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebocontrolled dose-response study. Diabetes Care. 2000;23:1605–1611.PubMedCrossRefGoogle Scholar
  31. 31.
    Mattoo V, Eckland D, Widel M, et al. Metabolic effects of pioglitazone in combination with insulin in patients with type 2 diabetes mellitus whose disease is not adequately controlled with insulin therapy: results of a six-month, randomized, double-blind, prospective, multicenter, parallelgroup study. Clin Ther. 2005;27:554–567.PubMedCrossRefGoogle Scholar
  32. 32.
    Williams-Herman D, Johnson J, Teng R, et al. Efficacy and safety of sitagliptin and metformin as initial combination therapy and as monotherapy over 2 years in patients with type 2 diabetes. Diabetes Obes Metab. 2010;12:442–451.PubMedCrossRefGoogle Scholar
  33. 33.
    Rosenstock J, Kim SW, Baron MA, et al. Efficacy and tolerability of initial combination therapy with vildagliptin and pioglitazone compared with component monotherapy in patients with type 2 diabetes. Diabetes Obes Metab. 2007;9:175–185.PubMedCrossRefGoogle Scholar
  34. 34.
    Dejager S, Razac S, Foley JE, Schweizer A. Vildagliptin in drug-naive patients with type 2 diabetes: a 24-week, double-blind, randomized, placebo-controlled, multiple-dose study. Horm Metab Res. 2007;39:218–223.PubMedCrossRefGoogle Scholar
  35. 35.
    DeFronzo RA, Fleck PR, Wilson CA, Mekki Q. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes and inadequate glycemic control: a randomized, double-blind, placebo-controlled study. Diabetes Care. 2008;31:2315–2317.PubMedCrossRefGoogle Scholar
  36. 36.
    Pratley RE, Kipnes MS, Fleck PR, Wilson C, Mekki Q. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin in patients with type 2 diabetes inadequately controlled by glyburide monotherapy. Diabetes Obes Metab. 2009;11:167–176.PubMedCrossRefGoogle Scholar
  37. 37.
    Taskinen MR, Rosenstock J, Tamminen I, et al. Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011;13:65–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Hollander P, Li J, Allen E, Chen R. Saxagliptin added to a thiazolidinedione improves glycemic control in patients with type 2 diabetes and inadequate control on thiazolidinedione alone. J Clin Endocrinol Metab. 2010;94:4810–4819.CrossRefGoogle Scholar
  39. 39.
    Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24- week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther. 2006;28:1556–1568.PubMedCrossRefGoogle Scholar
  40. 40.
    Yoon KH, Shockey GR, Teng R, et al. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and pioglitazone on glycemic control and measures of β-cell function in patients with type 2 diabetes. Int J Clin Pract. 2011;65:154–164.PubMedCrossRefGoogle Scholar
  41. 41.
    Charbonnel B, Karasik A, Liu J, Wu M, Meininger G. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care. 2006;29:2638–2643.PubMedCrossRefGoogle Scholar
  42. 42.
    Jadzinsky M, Pfutzner A, Paz-Pacheco E, Xu Z, Allen E, Chen R. Saxagliptin given in combination with metformin as initial therapy improves glycaemic control in patients with type 2 diabetes compared with either monotherapy: a randomized controlled trial. Diabetes Obes Metab. 2009;11:611–622.PubMedCrossRefGoogle Scholar
  43. 43.
    Levetan C. Oral antidiabetic agents in type 2 diabetes. Curr Med Res Opin. 2007;23:945–952.PubMedCrossRefGoogle Scholar
  44. 44.
    Ogawa S, Ishiki M, Nako K, Okamura M, Senda M, Mori T, Ito S. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes. Tohoku J Exp Med. 2011;223:133–135.PubMedCrossRefGoogle Scholar
  45. 45.
    Breuer HW. Review of acarbose therapeutic strategies in the long-term treatment and in the prevention of type 2 diabetes. Int J Clin Pharmacol Ther. 2003;41:421–440.PubMedGoogle Scholar
  46. 46.
    Papanas N, Maltezos E. Oral antidiabetic agents: anti-atherosclerotic properties beyond glucose lowering? Curr Pharm Des. 2009;15:3179–3192.PubMedCrossRefGoogle Scholar
  47. 47.
    Derosa G, Cicero AF, Fogari E, D’Angelo A, Bianchi L, Maffioli P. Pioglitazone compared to glibenclamide on lipid profile and inflammation markers in type 2 diabetic patients during an oral fat load. Horm Metab Res. 2011;43:505–512.PubMedCrossRefGoogle Scholar
  48. 48.
    Mannucci E, Monami M, Lamanna C, Gensini GF, Marchionni N. Pioglitazone and cardiovascular risk. A comprehensive meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2008;10:1 221–1 238.CrossRefGoogle Scholar
  49. 49.
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837–853.PubMedCrossRefGoogle Scholar
  50. 50.
    Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:854–865.CrossRefGoogle Scholar
  51. 51.
    Monami M, Dicembrini I, Martelli D, Mannucci E. Safety of dipeptidyl peptidase-4 inhibitors. A metaanalysis of randomized clinical trials. Curr Med Res Opin. 2011;27(Suppl. 3):57–64.PubMedCrossRefGoogle Scholar
  52. 52.
    AstraZeneca. SAVOR-TIMI 53 (Does Saxagliptin Reduce the Risk of Cardiovascular Events When Used Alone or Added to Other Diabetes Medications). Identifier: NCT01107886. Available at: clinicaltrials.gov/ct2/show/NCT01107886?term =type+2+diabetes+mellitus+and+cardiovascular+di sease&rank=37. Accessed Dec 27 2011.Google Scholar
  53. 53.
    Merck. TECOS (Sitagliptin Cardiovascular Outcome Study). Identifier: NCT 00790205. Available at: clinicaltrials.gov/ct2/show/NCT00790205. Accessed Dec 27 2011.Google Scholar
  54. 54.
    Takeda Global Research & Development Center, Inc. Cardiovascular Outcomes Study of Alogliptin in Subjects With Type 2 Diabetes and Acute Coronary Syndrome (EXAMINE). Identifier: NCT00968708. Available at: clinicaltrials.gov/ct2/show/NCT00968708. Accessed Dec 27 2011.Google Scholar
  55. 55.
    Boehringer Ingelheim Pharmaceuticals. CAROLINA: Cardiovascular Outcome Study of Linagliptin Versus Glimepiride in Patients With Type 2 Diabetes. Identifier: NCT01243424. Available at: clinicaltrials.gov/ct2/show/ NCT01243424. Accessed Dec 27 2011.Google Scholar
  56. 56.
    Nicholls SJ, Tuzcu EM, Wolski K, et al. Lowering the triglyceride/high-density lipoprotein cholesterol ratio is associated with the beneficial impact of pioglitazone on progression of coronary atherosclerosis in diabetic patients: insights from the PERISCOPE (Pioglitazone Effect on Regression of Intravascular Sonographic Coronary Obstruction Prospective Evaluation) study. J Am Coll Cardiol. 2011;57:153–159.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Healthcare 2012

Authors and Affiliations

  • Matteo Monami
    • 1
  • Valentina Vitale
    • 2
  • Maria Luisa Ambrosio
    • 1
  • Nadia Bartoli
    • 1
  • Giulia Toffanello
    • 1
  • Benedetta Ragghianti
    • 2
  • Francesca Monami
    • 1
  • Niccolò Marchionni
    • 1
  • Edoardo Mannucci
    • 2
  1. 1.Geriatric CardiologyAzienda Ospedaliero-Universitaria CareggiFlorenceItaly
  2. 2.Diabetes AgencyCareggi Teaching Hospital and University of FlorenceFlorenceItaly

Personalised recommendations