Advances in Therapy

, Volume 27, Issue 8, pp 495–511 | Cite as

Everolimus in the treatment of renal cell carcinoma and neuroendocrine tumors

  • Hiu-yan Chan
  • Ashley B. Grossman
  • Ronald M. Bukowski
Open Access
Review

Abstract

Renal cell carcinoma (RCC) and neuroendocrine tumors (NET) are uncommon malignancies, highly resistant to chemotherapy, that have emerged as attractive platforms for evaluating novel targeted regimens. Everolimus is an oral rapamycin derivative within the mammalian target of rapamycin class of agents. Preclinical series have shown that everolimus exhibits anticancer effects in RCC and NET cell lines. A phase 3 placebo-controlled study in advanced clear-cell RCC, known as RECORD-1 (for “REnal Cell cancer treatment with Oral RAD001 given Daily”), documented that everolimus stabilizes tumor progression, prolongs progression-free survival and has acceptable tolerability in patients previously treated with the multikinase inhibitors sunitinib and/or sorafenib. Everolimus has been granted regulatory approval for use in sunitinib-pretreated and/or sorafenib-pretreated advanced RCC and incorporated into clinical practice guidelines, and the RECORD-1 safety data are being used to develop recommendations for managing clinically important adverse events in everolimus-treated patients. Ongoing clinical trials are evaluating everolimus as earlier RCC therapy (first-line for advanced disease and as neoadjuvant therapy), in non-clear-cell tumors, and in combination with various other approved or investigational targeted therapies for RCC. Regarding advanced NET, recently published phase 2 data support the ability of everolimus to improve disease control in patients with advanced NET as monotherapy or in combination with somatostatin analogue therapy, octreotide long-acting release (LAR). Forthcoming data from phase 3 placebo-controlled trials of everolimus, one focused on monotherapy for pancreatic NET and the other on combination use with octreotide LAR for patients with advanced NET and a history of carcinoid syndrome, will provide insight into its future place in NET therapy. The results of a number of ongoing phase 3 evaluations of everolimus will determine its broader applicability in treating breast cancer (in combination with chemotherapy and hormonal therapy), several advanced gastrointestinal cancers, hepatocellular carcinoma, and lymphoma (in the adjuvant setting), as well as the various lesions associated with the tuberous sclerosis complex tumor suppressor gene.

Keywords

endocrine tumors everolimus gastroenteropancreatic islet cell carcinoma kidney cancer mTOR inhibitor neuroendocrine tumors RAD001 rapamycin renal cell carcinoma 

References

  1. 1.
    Sehgal SN, Baker H, Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo). 1975;28:727–732.Google Scholar
  2. 2.
    Douros J, Suffness M. New antitumor substances of natural origin. Cancer Treat Rev. 1981;8:63–87.CrossRefPubMedGoogle Scholar
  3. 3.
    Grozinsky-Glasberg S, Franchi G, Teng M, et al. Octreotide and the mTOR inhibitor RAD001 (everolimus) block proliferation and interact with the Akt-mTOR-p70S6K pathway in a neuroendocrine tumour cell Line. Neuroendocrinology. 2008;87:168–181.CrossRefPubMedGoogle Scholar
  4. 4.
    Chan JA, Kulke MH. Progress in the treatment of neuroendocrine tumors. Curr Oncol Rep. 2009;11:193–199.CrossRefPubMedGoogle Scholar
  5. 5.
    Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005;16:525–537.CrossRefPubMedGoogle Scholar
  6. 6.
    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology™. V.2.2010. Available at: www.nccn.org. Accessed January 24, 2010.Google Scholar
  7. 7.
    Coppin C, Porzsolt F, Autenrieth M, Kumpf J, Coldman A, Wilt T. Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev. 2004;3:CD001425.Google Scholar
  8. 8.
    Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–124.CrossRefPubMedGoogle Scholar
  9. 9.
    Motzer RJ, Hutson TE, Tomczak P, et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27:3584–3590.CrossRefPubMedGoogle Scholar
  10. 10.
    Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–134.CrossRefPubMedGoogle Scholar
  11. 11.
    Hutson TE, Davis ID, Machiels JP, et al. Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2010;28:475–480.CrossRefPubMedGoogle Scholar
  12. 12.
    Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103–2111.CrossRefPubMedGoogle Scholar
  13. 13.
    Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–2281.CrossRefPubMedGoogle Scholar
  14. 14.
    Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008;372:449–456.CrossRefPubMedGoogle Scholar
  15. 15.
    Motzer RJ, Escudier B, Oudard S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer. Published online June 14, 2010.Google Scholar
  16. 16.
    Escudier B, Eisen T, Stadler WM, et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol. 2009;27:3312–3318.CrossRefPubMedGoogle Scholar
  17. 17.
    Wiederkehr D, Howe CJ, Casciano R, et al. Overall survival among metastatic renal cell carcinoma patients corrected for crossover using inverse probability of censoring weights: analyses from the RECORD-1 phase 3 trial. Eur J Cancer Suppl. 2009;7:432.CrossRefGoogle Scholar
  18. 18.
    Patel PH, Chadalavada RS, Chaganti RS, Motzer RJ. Targeting von Hippel-Lindau pathway in renal cell carcinoma. Clin Cancer Res. 2006;12:7215–7220.CrossRefPubMedGoogle Scholar
  19. 19.
    Brugarolas J. Renal-cell carcinoma - molecular pathways and therapies. N Engl J Med. 2007;356:185–187.CrossRefPubMedGoogle Scholar
  20. 20.
    Pantuck AJ, Seligson DB, Klatte T, et al. Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer. 2007;109:2257–2267.CrossRefPubMedGoogle Scholar
  21. 21.
    Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP. Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol. 2007;177:346–352.CrossRefPubMedGoogle Scholar
  22. 22.
    Juengel E, Engler J, Natsheh I, et al. Combining the receptor tyrosine kinase inhibitor AEE788 and the mammalian target of rapamycin (mTOR) inhibitor RAD001 strongly inhibits adhesion and growth of renal cell carcinoma cells. BMC Cancer. 2009;9:161.CrossRefPubMedGoogle Scholar
  23. 23.
    Amato RJ, Jac J, Giessinger S, Saxena S, Willis JP. A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer. 2009;115:2438–2446.CrossRefPubMedGoogle Scholar
  24. 24.
    Porta C, Ravaud A, Osanto S, et al. Recommendations for adverse event management in patients with renal cell carcinoma treated with everolimus: safety data from the RECORD-1 trial. Poster presented at the 8th International Kidney Cancer Symposium, September 25–26, 2009, Chicago, IL, USA.Google Scholar
  25. 25.
    EAU. Guidelines on Renal Cell Carcinoma. European Association of Urology 2010. Available at: www.uroweb.org. Accessed June 14, 2010.Google Scholar
  26. 26.
    Escudier B, Kataja V; ESMO Guidelines Working Group. Renal cell carcinoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20(Suppl 4):81–82.PubMedGoogle Scholar
  27. 27.
    de Reijke TM, Bellmunt J, van Poppel H, Marreaud S, Aapro M. EORTC-GU group expert opinion on metastatic renal cell cancer. Eur J Cancer. 2009;45:765–773.CrossRefPubMedGoogle Scholar
  28. 28.
    Jänne PA, Gray N, Settleman J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov. 2009;8:709–23.CrossRefPubMedGoogle Scholar
  29. 29.
    Vickers MM, Choueiri TK, Rogers M, et al. Clinical outcome in metastatic renal cell carcinoma patients after failure of initial vascular endothelial growth factor-targeted therapy. J Urol. 2010; March 9 [Epub ahead of print]Google Scholar
  30. 30.
    Sablin MP, Negrier S, Ravaud A, et al. Sequential sorafenib and sunitinib for renal cell carcinoma. J Urol. 2009;182:29–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Dudek AZ, Zolnierek J, Dham A, Lindgren BR, Szczylik C. Sequential therapy with sorafenib and sunitinib in renal cell carcinoma. Cancer. 2009;115:61–67.CrossRefPubMedGoogle Scholar
  32. 32.
    Di Lorenzo G, Cartenì G, Autorino R, et al. Phase II study of sorafenib in patients with sunitinib-refractory metastatic renal cell cancer. J Clin Oncol. 2009;27:4469–4474.CrossRefPubMedGoogle Scholar
  33. 33.
    Shepard DR, Rini BI, Garcia JA, et al. A multicenter prospective trial of sorafenib in patients (pts) with metastatic clear cell renal cell carcinoma (mccRCC) refractory to prior sunitinib or bevacizumab. J Clin Oncol. 2008;26:5123.Google Scholar
  34. 34.
    Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–3072.CrossRefPubMedGoogle Scholar
  35. 35.
    Rinke A, Müller HH, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27:4656–4663.CrossRefPubMedGoogle Scholar
  36. 36.
    Capurso G, Fazio N, Festa S, et al. Molecular target therapy for gastroenteropancreatic endocrine tumours: biological rationale and clinical perspectives. Crit Rev Oncol Hematol. 2009;72:110–124.CrossRefPubMedGoogle Scholar
  37. 37.
    Missiaglia E, Dalai I, Barbi S, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 2010;28:245–255.CrossRefPubMedGoogle Scholar
  38. 38.
    Yao JC. Neuroendocrine tumors. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract Res Clin Endocrinol Metab. 2007;21:163–172.CrossRefPubMedGoogle Scholar
  39. 39.
    Dworakowska D, Grossman AB. Are neuroendocrine tumours a feature of tuberous sclerosis? A systematic review. Endocr Relat Cancer. 2009;16:45–58.CrossRefPubMedGoogle Scholar
  40. 40.
    Zitzmann K, De Toni EN, Brand S, et al. The novel mTOR inhibitor RAD001 (everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells. Neuroendocrinology. 2007;85:54–60.CrossRefPubMedGoogle Scholar
  41. 41.
    Cerovac V, Monteserin-Garcia J, Rubinfeld H, et al. The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells. Cancer Res. 2010;70:666–674.CrossRefPubMedGoogle Scholar
  42. 42.
    Grozinsky-Glasberg S, Rubinfeld H, Nordenberg Y, et al. The rapamycin-derivative RAD001 (everolimus) inhibits cell viability and interacts with the Akt-mTOR-p70S6K pathway in human medullary thyroid carcinoma cells. Mol Cell Endocrinol. 2010;315:87–94.CrossRefPubMedGoogle Scholar
  43. 43.
    Hörsch D, Tielke S, Schrader J. Expression and activation of mTOR in neuroendocrine tumors. Effects of mTOR inhibition by RAD001 upon growth, cell cycle regulation and signalling in neuroendocrine cell lines [abstract]. J Clin Oncol. 2007;25(18S):582s.Google Scholar
  44. 44.
    Righi L, Volante M, Tavaglione V, et al. Mammalian target of rapamycin (MTOR) signaling activation patterns in neuroendocrine tumors of the lung. Virchows Arch. 2008;452(Suppl 1):S15.Google Scholar
  45. 45.
    Yao JC, Phan AT, Chang DZ, et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol. 2008;26:4311–4318.CrossRefPubMedGoogle Scholar
  46. 46.
    Yao JC, Lombard-Bohas C, Baudin E, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010;28:69–76.CrossRefPubMedGoogle Scholar
  47. 47.
    Kulke MH, Bergsland EK, Yao JC. Glycemic control in patients with insulinoma treated with everolimus. N Engl J Med. 2009;360:195–197.CrossRefPubMedGoogle Scholar
  48. 48.
    Bourcier ME, Sherrod A, DiGuardo M, Vinik AI. Successful control of intractable hypoglycemia using rapamycin in an 86-year-old man with a pancreatic insulin-secreting islet cell tumor and metastases. J Clin Endocrinol Metab. 2009;94:3157–3162.CrossRefPubMedGoogle Scholar
  49. 49.
    Leibiger IB, Leibiger B, Moede T, Berggren PO. Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol Cell. 1998;1:933–938.CrossRefPubMedGoogle Scholar
  50. 50.
    Fuhrer DK, Kobayashi M, Jiang H. Insulin release and suppression by tacrolimus, rapamycin and cyclosporin A are through regulation of the ATP-sensitive potassium channel. Diabetes Obes Metab. 2001;3:393–402.CrossRefPubMedGoogle Scholar
  51. 51.
    Druce MR, Kaltsas GA, Fraenkel M, Gross DJ, Grossman AB. Novel and evolving therapies in the treatment of malignant phaeochromocytoma: experience with the mTOR inhibitor everolimus (RAD001). Horm Metab Res. 2009;41:697–702.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Healthcare 2010

Authors and Affiliations

  • Hiu-yan Chan
    • 1
  • Ashley B. Grossman
    • 1
  • Ronald M. Bukowski
    • 2
  1. 1.Barts and the London School of MedicineLondonUK
  2. 2.Cleveland Clinic Taussig Cancer CenterClevelandUSA

Personalised recommendations