Advertisement

Advances in Therapy

, Volume 27, Issue 2, pp 63–80 | Cite as

Brain volume abnormalities and neurocognitive deficits in diabetes mellitus: Points of pathophysiological commonality with mood disorders?

  • Roger S. McIntyre
  • Heather A. Kenna
  • Ha T. Nguyen
  • Candy W. Y. Law
  • Farah Sultan
  • Hanna O. Woldeyohannes
  • Mohammad T. Alsuwaidan
  • Joanna K. Soczynska
  • Amanda K. Adams
  • Jenny S. H. Cheng
  • Maria Lourenco
  • Sidney H. Kennedy
  • Natalie L. Rasgon
Review

Abstract

Background

It is hypothesized that diabetes mellitus (DM) and mood disorders share points of pathophysiological commonality in the central nervous system.

Methods

A PubMed search of all English-language articles published between 1966 and March 2009 was performed with the following search terms: depression, mood disorders, hippocampus, amygdala, central nervous system, brain, neuroimaging, volumetric, morphometric, and neurocognitive deficits, cross-referenced with DM. Articles selected for review were based on adequacy of sample size, the use of standardized experimental procedures, validated assessment measures, and overall manuscript quality. The primary author was principally responsible for adjudicating the merit of articles that were included.

Results

Volumetric studies indicate that individuals with Type 1/2 DM exhibit regional abnormalities in both cortical and subcortical (eg, hippocampus, amygdala) brain structures. The pattern of neurocognitive deficits documented in individuals with Type 1 DM overlap with Type 2 populations, with suggestions of discrete abnormalities unique to each phenotype. The pattern of volumetric and neurocognitive deficits in diabetic populations are highly similar to that reported in populations of individuals with major depressive disorder.

Conclusion

The prevailing models of disease pathophysiology in DM and major depressive disorder are distinct. Notwithstanding, the common abnormalities observed in disparate effector systems (eg, insulin resistance, immunoinflammatory activation) as well as brain volume and neurocognitive performance provide the nexus for hypothesizing that both conditions are subserved by overlapping pathophysiology. This conception provides a novel framework for disease modeling and treatment development in mood disorder.

Keywords

amygdala brain diabetes mellitus hippocampus mood disorders morphometric MRI neurocognitive deficits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2004;27:S5–S10.CrossRefGoogle Scholar
  2. 2.
    Reske-Nielsen E, Lundbaek K. Diabetic encephalopathy. Diffuse and focal lesions of the brain in long-term diabetes. Acta Neurol Scand. 1963;39(suppl. 4):90.Google Scholar
  3. 3.
    McIntyre RS, Soczynska JK, Konarski JZ, et al. Should depressive syndromes be reclassified as “metabolic syndrome type II”? Ann Clin Psychiatry. 2007;19:257–264.CrossRefPubMedGoogle Scholar
  4. 4.
    Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol. 2004;3:169–178.CrossRefPubMedGoogle Scholar
  5. 5.
    Lustman PJ, Griffith LS, Clouse RE, Cryer PE. Psychiatric illness in diabetes mellitus. Relationship to symptoms and glucose control. J Nerv Ment Dis. 1986;174:736–742.CrossRefPubMedGoogle Scholar
  6. 6.
    Rasgon N, Jarvik L. Insulin resistance, affective disorders, and Alzheimer’s disease: review and hypothesis. J Gerontol A Biol Sci Med Sci. 2004;59:178–183.PubMedGoogle Scholar
  7. 7.
    McEwen BS. Mood disorders and allostatic load. Biol Psychiatry. 2003;54:200–207.CrossRefPubMedGoogle Scholar
  8. 8.
    McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–122.CrossRefPubMedGoogle Scholar
  9. 9.
    Konarski JZ, McIntyre RS, Kennedy SH, Rafi-Tari S, Soczynska JK, Ketter TA. Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord. 2008;10:1–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Rasgon NL, Kenna HA. Insulin resistance in depressive disorders and Alzheimer’s disease: revisiting the missing link hypothesis. Neurobiol Aging. 2005;26(suppl. 1):103–107.CrossRefPubMedGoogle Scholar
  11. 11.
    Soininen H, Puranen M, Helkala EL, Laakso M, Riekkinen PJ. Diabetes mellitus and brain atrophy: a computed tomography study in an elderly population. Neurobiol Aging. 1992;13:717–721.CrossRefPubMedGoogle Scholar
  12. 12.
    Araki Y, Nomura M, Tanaka H, et al. MRI of the brain in diabetes mellitus. Neuroradiology. 1994;36:101–103.CrossRefPubMedGoogle Scholar
  13. 13.
    Convit A, De Leon MJ, Tarshish C, et al. Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging. 1997;18:131–138.CrossRefPubMedGoogle Scholar
  14. 14.
    Perros P, Deary IJ, Sellar RJ, Best JJ, Frier BM. Brain abnormalities demonstrated by magnetic resonance imaging in adult IDDM patients with and without a history of recurrent severe hypoglycemia. Diabetes Care. 1997;20:1013–1018.CrossRefPubMedGoogle Scholar
  15. 15.
    den Heijer T, Vermeer SE, van Dijk EJ, et al. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI. Diabetologia. 2003;46:1604–1610.CrossRefGoogle Scholar
  16. 16.
    Ferguson SC, Blane A, Perros P, et al. Cognitive ability and brain structure in type 1 diabetes: relation to microangiopathy and preceding severe hypoglycemia. Diabetes. 2003;52:149–156.CrossRefPubMedGoogle Scholar
  17. 17.
    Ferguson SC, Blane A, Wardlaw J, et al. Influence of an early-onset age of type 1 diabetes on cerebral structure and cognitive function. Diabetes Care. 2005;28:1431–1437.CrossRefPubMedGoogle Scholar
  18. 18.
    Lobnig BM, Kromeke O, Optenhostert-Porst C, Wolf OT. Hippocampal volume and cognitive performance in long-standing type 1 diabetic patients without macrovascular complications. Diabet Med. 2006;23:32–39.CrossRefPubMedGoogle Scholar
  19. 19.
    Musen G, Lyoo IK, Sparks CR, et al. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes. 2006;55:326–333.CrossRefPubMedGoogle Scholar
  20. 20.
    Wessels AM, Simsek S, Remijnse PL, et al. Voxel-based morphometry demonstrates reduced grey matter density on brain MRI in patients with diabetic retinopathy. Diabetologia. 2006;49:2474–2480.CrossRefPubMedGoogle Scholar
  21. 21.
    Wessels AM, Rombouts SA, Remijnse PL, et al. Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume. Diabetologia. 2007;50:1763–1769.CrossRefPubMedGoogle Scholar
  22. 22.
    Perantie DC, Wu J, Koller JM, et al. Regional brain volume differences associated with hyperglycemia and severe hypoglycemia in youth with type 1 diabetes. Diabetes Care. 2007;30:2331–2337.CrossRefPubMedGoogle Scholar
  23. 23.
    Jongen C, van der GJ, Kappelle LJ, Biessels GJ, Viergever MA, Pluim JP. Automated measurement of brain and white matter lesion volume in type 2 diabetes mellitus. Diabetologia. 2007;50:1509–1516.CrossRefPubMedGoogle Scholar
  24. 24.
    Kumar R, Anstey KJ, Cherbuin N, Wen W, Sachdev PS. Association of type 2 diabetes with depression, brain atrophy, and reduced fine motor speed in a 60- to 64-year-old community sample. Am J Geriatr Psychiatry. 2008;16:989–998.CrossRefPubMedGoogle Scholar
  25. 25.
    Kodl CT, Franc DT, Rao JP, et al. Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes. 2008;57:3083–3089.CrossRefPubMedGoogle Scholar
  26. 26.
    Haroon E, Watari K, Thomas A, et al. Prefrontal myo-inositol concentration and visuospatial functioning among diabetic depressed patients. Psychiatry Res. 2009;171:10–19.CrossRefPubMedGoogle Scholar
  27. 27.
    Northam EA, Rankins D, Lin A, et al. Central nervous system function in youth with type 1 diabetes 12 years after disease onset. Diabetes Care. 2009;32:445–450.CrossRefPubMedGoogle Scholar
  28. 28.
    Auer RN, Siesjo BK. Hypoglycaemia: brain neurochemistry and neuropathology. Baillieres Clin Endocrinol Metab. 1993;7:611–625.CrossRefPubMedGoogle Scholar
  29. 29.
    Deary IJ, Crawford JR, Hepburn DA, Langan SJ, Blackmore LM, Frier BM. Severe hypoglycemia and intelligence in adult patients with insulin-treated diabetes. Diabetes. 1993;42:341–344.CrossRefPubMedGoogle Scholar
  30. 30.
    Vitek MP, Bhattacharya K, Glendening JM, et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A. 1994;91:4766–4770.CrossRefPubMedGoogle Scholar
  31. 31.
    van der Heide LP, Ramakers GM, Smidt MP. Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol. 2006;79:205–221.CrossRefPubMedGoogle Scholar
  32. 32.
    Sonntag WE, Ramsey M, Carter CS. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev. 2005;4:195–212.CrossRefPubMedGoogle Scholar
  33. 33.
    Fernandez S, Fernandez AM, Lopez-Lopez C, Torres-Aleman I. Emerging roles of insulin-like growth factor-I in the adult brain. Growth Horm IGF Res. 2007;17:89–95.CrossRefPubMedGoogle Scholar
  34. 34.
    Musselman DL, Betan E, Larsen H, Phillips LS. Relationship of depression to diabetes types 1 and 2: epidemiology, biology, and treatment. Biol Psychiatry. 2003;54:317–329.CrossRefPubMedGoogle Scholar
  35. 35.
    Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry. 2004;56:819–824.CrossRefPubMedGoogle Scholar
  36. 36.
    Paris D, Town T, Parker T, Humphrey J, Mullan M. beta-Amyloid vasoactivity and proinflammation in microglia can be blocked by cGMP-elevating agents. Ann N Y Acad Sci. 2000;903:446–450.CrossRefPubMedGoogle Scholar
  37. 37.
    Rosenberg PB. Clinical aspects of inflammation in Alzheimer’s disease. Int Rev Psychiatry. 2005;17:503–514.CrossRefPubMedGoogle Scholar
  38. 38.
    Laws SM, Perneczky R, Wagenpfeil S, et al. TNF polymorphisms in Alzheimer disease and functional implications on CSF beta-amyloid levels. Hum Mutat. 2005;26:29–35.CrossRefPubMedGoogle Scholar
  39. 39.
    Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed. 2006;8:25.PubMedGoogle Scholar
  40. 40.
    Collino M, Aragno M, Mastrocola R, et al. Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol. 2006;530:70–80.CrossRefPubMedGoogle Scholar
  41. 41.
    Lopes JP, Oliveira SM, Soares FJ. [Oxidative stress and its effects on insulin resistance and pancreatic beta-cells dysfunction: relationship with type 2 diabetes mellitus complications]. Acta Med Port. 2008;21:293–302. Article in Portuguese.PubMedGoogle Scholar
  42. 42.
    Rush AJ, Giles DE, Schlesser MA, et al. The dexamethasone suppression test in patients with mood disorders. J Clin Psychiatry. 1996;57:470–484.PubMedGoogle Scholar
  43. 43.
    McEwen BS, Magarinos AM, Reagan LP. Studies of hormone action in the hippocampal formation: possible relevance to depression and diabetes. J Psychosom Res. 2002;53:883–890.CrossRefPubMedGoogle Scholar
  44. 44.
    Wrighten SA, Piroli GG, Grillo CA, Reagan LP. A look inside the diabetic brain: Contributors to diabetes-induced brain aging. Biochim Biophys Acta. 2009;1792:444–453.PubMedGoogle Scholar

Copyright information

© Springer Healthcare 2010

Authors and Affiliations

  • Roger S. McIntyre
    • 1
  • Heather A. Kenna
    • 3
  • Ha T. Nguyen
    • 2
  • Candy W. Y. Law
    • 2
  • Farah Sultan
    • 2
  • Hanna O. Woldeyohannes
    • 2
  • Mohammad T. Alsuwaidan
    • 2
  • Joanna K. Soczynska
    • 2
  • Amanda K. Adams
    • 2
  • Jenny S. H. Cheng
    • 2
  • Maria Lourenco
    • 2
  • Sidney H. Kennedy
    • 2
  • Natalie L. Rasgon
    • 3
  1. 1.University of Toronto, Head of Mood Disorders Psychopharmacology UnitUniversity Health NetworkTorontoCanada
  2. 2.Mood Disorders Psychopharmacology UnitUniversity Health NetworkTorontoCanada
  3. 3.Stanford UniversityPalo AltoUSA

Personalised recommendations