Forum

, Volume 29, Issue 2, pp 105–111

Krebs und das Immunsystem

Fokus
  • 118 Downloads

Zusammenfassung

Die Ursachenforschung zur Entstehung von Malignomen beschäftigt sich nicht nur mit zytogenetischen, molekulargenetischen und epigenetischen Prozessen, sondern auch mit tumorimmunologischen Abwehrmechanismen. Maligne Zellen nutzen verschiedene Mechanismen, um sich dem Zugriff des Immunsystems zu entziehen. CD4-positive T-Helferzellen und CD8-positive zytotoxischen T-Lymphozyten sowie Zellen der angeborenen Immunität, wie die natürlichen Killer(NK)-Zellen, spielen eine wichtige Rolle bei der Erkennung maligner Zellen. Die spezifische Immunantwort erlaubt eine Erkennung tumorassoziierter Antigene im Kontext der Präsentation über MHC-Moleküle, was konsekutiv zu einer Eliminierung der Zielzellen führt. Tumoren entziehen sich jedoch häufig der immunologischen Erkennung einerseits durch den Verlust tumorspezifischer Antigene (TAA, HLA-Moleküle), andererseits aber auch durch die Expression immunsuppressiver Moleküle. Ebenso verändern Tumoren ihr Mikroenvironment beispielsweise durch Akkumulation regulatorischer T-Zellen und „myeloid-derived suppressor cells“ oder auch durch Sekretion immunsuppressiver Zytokine wie z. B. TGF-β. Das wachsende Verständnis der Mechanismen des „immune escape“ führt zu einer wachsenden Anzahl immuntherapeutischer Ansätze in der Behandlung von Krebserkrankungen. Die neueren Entwicklungen zeigen die zunehmende Bedeutung imunologischer Therapiekonzepte in der modernen Onklogie, wobei die optimalen Kombinationen der neuen Antikörper mit klassischen Therapiemodalitäten wie Operation, Chemotherapie, „small drugs“ und Radiotherapie bisher nicht definiert sind.

Schlüsselwörter

Neoplasmas T-Lymphozyten Zytokine „Tumor escape“ Krebsbehandlung 

Cancer and the immune system

Abstract

The role of tumor cell intrinsic genomic changes induced by genetic or epigenetic mechanisms are well described for malignant transformation and tumor progression. However, the tumor microenvironment including various types of immune cells also plays an important role for tumor induction and progression. Malignant cells can be recognized by specific immune cells such as CD4 T helper or CD8 cytotoxic T lymphocytes, as well as by cells of the innate immune system, such as natural killer (NK) cells. Immunological tumor control is often counterbalanced by immune evasion strategies, such as specific tumor antigens (TAA) or major histocompatibility complex (MHC) proteins as well as by the expression of immunosuppressive molecules. In addition, tumors actively change the microenvironment by recruiting immune suppressive cell populations including regulatory T cells and myeloid-derived suppressor cells as well as by secretion of immunosuppressive cytokines including transforming growth factor (TGF) beta. The growing understanding of these immune escape mechanisms has led to an increasing number of immunotherapeutic attempts at the treatment of cancer. However, optimal timing of immunostimulatory interventions with respect to the administration of immunogenic chemotherapeutic agents, the use of small drugs or other classical cancer therapeutics promoting productive antitumor immune responses have yet to be defined.

Keywords

Neoplasms T-lymphocytes Cytokines Tumor escape Cancer treatment 

Literatur

  1. 1.
    Allavena P, Mantovani A (2012) Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 167(2):195–205PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Arnold D, Faath S, Rammensee H, Schild H (1995) Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 182:885–889PubMedCrossRefGoogle Scholar
  3. 3.
    Brossart P, Bevan MJ (1997) Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood 90:1594–1599PubMedCentralPubMedGoogle Scholar
  4. 4.
    Bruggen P van der, Traversari C, Chomez P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647PubMedCrossRefGoogle Scholar
  5. 5.
    Dorfel D, Appel S, Grunebach F et al (2005) Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA. Blood 105:3199–3205PubMedCrossRefGoogle Scholar
  6. 6.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Gajewski TF (2007) Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res 13:5256–5261PubMedCrossRefGoogle Scholar
  8. 8.
    Galdiero MR, Bonavita E, Barajon I et al (2013)Tumor associated macrophages and neutrophils in cancer. Immunobiology 218(11):1402–1410PubMedCrossRefGoogle Scholar
  9. 9.
    Hamzah J, Jugold M, Kiessling F et al (2008) Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453:410–414PubMedCrossRefGoogle Scholar
  10. 10.
    Hörning A, Wilde B (2012) FoxP3 – Stabilitäts- und Expressionspotenzierung durch epigenetische Regulation. Nephrologe 7:508–510CrossRefGoogle Scholar
  11. 11.
    Huang Y, Yuan J, Righi E et al (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 109:17561–17566PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Joffre OP, Segura E, Savina A, Amigorena S (2012) Cross-presentation by dendritic cells. Nat Rev Immunol 12:557–569PubMedCrossRefGoogle Scholar
  13. 13.
    Kaplan DH et al (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kerkar SP, Restifo NP (2012) Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 72:3125–3130PubMedCrossRefGoogle Scholar
  15. 15.
    Mantovani A (2010) The growing diversity and spectrum of action of myeloid-derived suppressor cells. Eur J Immunol 40(12):3317–3320PubMedCrossRefGoogle Scholar
  16. 16.
    Matsumoto S, Batra S, Saito K et al (2011) Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia. Cancer Res 71:6350–6359PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207PubMedCrossRefGoogle Scholar
  18. 18.
    Pages F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666PubMedCrossRefGoogle Scholar
  19. 19.
    Russell JH, Ley TJ (2002) Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20:323–370PubMedCrossRefGoogle Scholar
  20. 20.
    Schroder et al (2004) IFN-γ: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189PubMedCrossRefGoogle Scholar
  21. 21.
    Shankaran V et al (2001) IFN gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111PubMedCrossRefGoogle Scholar
  22. 22.
    Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747PubMedCrossRefGoogle Scholar
  23. 23.
    Trapani (2001) Granzymes: a family of lymphocyte granule serine proteases. Genome Biol 2(12):reviews 3014.1–3014CrossRefGoogle Scholar
  24. 24.
    Weide B, Zelba H, Derhovanessian E et al (2012) Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J Clin Oncol 30:1835–1841PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Onkologie, Hämatologie und RheumatologieMedizinische Klinik III, Universitätsklinik BonnBonnDeutschland

Personalised recommendations