, Volume 28, Issue 6, pp 423–427

Neue Entwicklungen in der Chirurgie von Gliomen




Die aktuelle Literatur legt nahe, dass die primäre und möglichst radikale Resektion von Gliomen die Prognose der Patienten verbessert. Entscheidend ist, dass dabei keine wesentlichen neurologischen Defizite entstehen.


In diesem Zusammenhang konnten innerhalb der letzten Jahre Techniken zur prä- sowie intraoperativen Erkennung von Tumorgewebe und Funktionen entwickelt bzw. verbessert werden, z. B. die Positronenemissionstomographie (PET) mit Aminosäuren, die funktionelle MRT, die navigierte Hirnstimulation, Fluoreszenzmethoden und der intraoperative Einsatz der MRT. Der vorliegende Beitrag gibt einen Überblick über aktuelle Entwicklungen in der Chirurgie hirneigener Tumoren.


Gliome Neurochirurgie Positronenemissionstomographie Magnetresonanztomographie Hirnstimulation 

New developments in the surgical treatment of gliomas



The current literature strongly supports radical resection of gliomas as the first line therapy to improve the prognosis of patients. However, it is important that no significant neurological deficits result.


Accordingly, a number of pre- and intra-operative techniques for the identification of functionally intact brain and infiltrating tumor tissue have been developed, e.g., amino acid positron emission tomography, functional MRI, fluorescence techniques, navigated brain stimulation, and the intra-operative MRI. This review summarizes recent developments in the field of neurosurgery for the management of gliomas.


Gliomas Neurosurgery procedures Positron-emission tomography Magnetic resonance imaging Brain stimulation 


  1. 1.
    De Witt Hamer PC, Robles SG, Zwindermann AH et al (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30:2559–2565CrossRefGoogle Scholar
  2. 2.
    Desmurget M, Bonnetblanc F, Duffau H (2007) Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain 130(Pt 4):898–914PubMedCrossRefGoogle Scholar
  3. 3.
    Ewelt C, Floeth FW, Felsberg J et al (2011) Finding the anaplastic focus in diffuse gliomas: the value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence. Clin Neurol Neurosurg 113:541–547PubMedCrossRefGoogle Scholar
  4. 4.
    Farrel DF, Burbank N, Lettich E, Ojemann G (2007) Individual variation in human motor-sensory (rolandic) cortex. J Clin Neurophysiol 24(3):286–293CrossRefGoogle Scholar
  5. 5.
    Floeth FW, Pauleit D, Sabel M et al (2007) Prognostic value of O-(2–18F-fluoroethyl)-L-tyrosine PET and MRI in low-gradeglioma. J Nucl Med 48:519–527PubMedCrossRefGoogle Scholar
  6. 6.
    Frey D, Strack V, Wiener E et al (2012) A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. Neuroimage 62:1600–1609PubMedCrossRefGoogle Scholar
  7. 7.
    Guillevin R, Menuel C, Abud L et al (2012) Proton MR spectroscopy in predicting the increase of perfusion MR imaging for WHO grade II gliomas. J Magn Reson Imaging 35:543–550PubMedCrossRefGoogle Scholar
  8. 8.
    Ilmberger J, Ruge M, Kreth FW et al (2008) Intraoperative mapping of language functions: a longitudinal neurolinguistic analysis. J Neurosurg 109:583–592PubMedCrossRefGoogle Scholar
  9. 9.
    Jakola AS, Myrmel KS, Kloster R et al (2013) Comparison of a strategy favoring early surgical resection vs. a strategy favoring watchful waiting in low-grade gliomas. JAMA 308:1881–1888CrossRefGoogle Scholar
  10. 10.
    Keles GE, Lamborn KR, Berger MS (2001) Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg 95:735–745PubMedCrossRefGoogle Scholar
  11. 11.
    Laws ER, Parney IF, Huang W et al (2003) Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg 99:467–473PubMedCrossRefGoogle Scholar
  12. 12.
    Mandonnet E, Delattre JY, Tanguy ML et al (2003) Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol 53:524–528PubMedCrossRefGoogle Scholar
  13. 13.
    McGirt MJ, Chaichana KL, Attenello FJ et al (2008) Extent of surgical resection is independently associated with survival in patients with hemispheric infiltrating low-grade gliomas. Neurosurgery 63:700–707PubMedCrossRefGoogle Scholar
  14. 14.
    McGirt MJ, Chaichana KL, Gathinji M et al (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110:156–162PubMedCrossRefGoogle Scholar
  15. 15.
    McGirt MJ, Mukherjee D, Chaichana KL et al (2009) Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65:463–469PubMedCrossRefGoogle Scholar
  16. 16.
    Ojemann G, Ojemann J, Lettich E, Berger M (2008) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 108(2):411–421PubMedCrossRefGoogle Scholar
  17. 17.
    Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. N Engl J Med 358(1):18–27PubMedCrossRefGoogle Scholar
  18. 18.
    Sanai N, Snyder LA, Honea NJ et al (2011) Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low grade gliomas. J Neurosurg 115:740–748PubMedCrossRefGoogle Scholar
  19. 19.
    Seidel K, Beck J, Stieglitz L et al (2013) The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg 118:287–296PubMedCrossRefGoogle Scholar
  20. 20.
    Senft C, Bink A, Franz K et al (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: randomised, controlled trial. Lancet Oncol 12:997–1003PubMedCrossRefGoogle Scholar
  21. 21.
    Shinoura N, Suzuki Y, Yamada R et al (2009) Precentral knob corresponds to the primary motor and premotor area. Can J Neurol Sci 36(2):227–233PubMedGoogle Scholar
  22. 22.
    Smith JS, Chang EF, Lamborn KR et al (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26:1338–1345PubMedCrossRefGoogle Scholar
  23. 23.
    Stummer W, Meinel T, Ewelt C et al (2012) Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. J Neurooncol 108:89–97PubMedCrossRefGoogle Scholar
  24. 24.
    Stummer W, Nestler U, Stockhammer F et al (2011) Favorable outcome in the elderly cohort treated by concomitant temozolomide radiochemotherapy in a multicentric phase II safety study of 5-ALA. J Neurooncol 103:361–370PubMedCrossRefGoogle Scholar
  25. 25.
    Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401PubMedCrossRefGoogle Scholar
  26. 26.
    Stummer W, Stocker S, Wagner S et al (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42:518–525PubMedCrossRefGoogle Scholar
  27. 27.
    Vuorinen V, Hinkka S, Farkkila M et al (2003) Debulking or biopsy of malignant glioma in elderly people – a randomised study. Acta Neurochir (Wien) 145:5–10Google Scholar
  28. 28.
    Weiss C, Nettekoven C, Rehme AK et al (2012) Mapping the hand, foot and face representations in the primary motor cortex – retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 66:531–542CrossRefGoogle Scholar
  29. 29.
    Widhalm G, Wolfsberger S, Minchev G et al (2010) 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with non-significant contrast enhancement. Cancer 116:1545–1552PubMedCrossRefGoogle Scholar
  30. 30.
    Willems PW, Taphoorn MJ, Burger H et al (2006) Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg 104:361–368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Neurochirurgische KlinikUniversitätsklinikum MünsterMünsterDeutschland
  2. 2.Neurochirurgische KlinikUniversitätsklinikum KölnKölnDeutschland

Personalised recommendations