Skip to main content
Log in

Functional Convergence of Motor and Social Processes in Lobule IV/V of the Mouse Cerebellum

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Topographic organization of the cerebellum is largely segregated into the anterior and posterior lobes that represent its “motor” and “non-motor” functions, respectively. Although patients with damage to the anterior cerebellum often exhibit motor deficits, it remains unclear whether and how such an injury affects cognitive and social behaviors. To address this, we perturbed the activity of major anterior lobule IV/V in mice by either neurotoxic lesion or chemogenetic excitation of Purkinje cells in the cerebellar cortex. We found that both of the manipulations impaired motor coordination, but not general locomotion or anxiety-related behavior. The lesioned animals showed memory deficits in object recognition and social-associative recognition tests, which were confounded by a lack of exploration. Chemogenetic excitation of Purkinje cells disrupted the animals’ social approach in a less-preferred context and social memory, without affecting their overall exploration and object-based memory. In a free social interaction test, the two groups exhibited less interaction with a stranger conspecific. Subsequent c-Fos imaging indicated that decreased neuronal activities in the medial prefrontal cortex, hippocampal dentate gyrus, parahippocampal cortices, and basolateral amygdala, as well as disorganized modular structures of the brain networks might underlie the reduced social interaction. These findings suggest that the anterior cerebellum plays an intricate role in processing motor, cognitive, and social functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data are available upon request.

References

  1. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia AS, Mooney RD, Platt ML, White LE. Neuroscience. 6th ed. Oxford: Oxford University Press; 2017.

    Google Scholar 

  2. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.

    PubMed  PubMed Central  Google Scholar 

  3. Sokolov AA, Miall RC, Ivry RB. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci. 2017;21(5):313–32.

    PubMed  PubMed Central  Google Scholar 

  4. Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci. 2019;20(5):298–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64.

    CAS  PubMed  Google Scholar 

  6. Van Overwalle F, Manto M, Cattaneo Z, et al. Consensus Paper: Cerebellum and Social Cognition. Cerebellum. 2020;19:833–68.

    PubMed  PubMed Central  Google Scholar 

  7. Schmahmann JD, Macmore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162(3):852–61.

    CAS  PubMed  Google Scholar 

  8. Deluca C, Golzar A, Santandrea E, Lo Gerfo E, Eštočinová J, Moretto G, et al. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task. Cortex. 2014;58:52–71.

    PubMed  Google Scholar 

  9. Stoodley CJ, MacMore JP, Makris N, Sherman JC, Schmahmann JD. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. Neuroimage Clin. 2016;12:765–75.

    PubMed  PubMed Central  Google Scholar 

  10. Blatt GJ, Oblak AL, Schmahmann JD. Cerebellar connections with limbic circuits: anatomy and functional implications. In: Manto M, et al., editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer Netherlands; 2013. p. 479–96.

    Google Scholar 

  11. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.

    PubMed  Google Scholar 

  12. Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. Neuroimage. 2012;61(4):805–11.

    PubMed  Google Scholar 

  13. Keren-Happuch E, et al. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615.

    Google Scholar 

  14. Khan AJ, Nair A, Keown CL, Datko MC, Lincoln AJ, Müller RA. Cerebro-cerebellar resting-state functional connectivity in children and adolescents with autism spectrum disorder. Biol Psychiatry. 2015;78(9):625–34.

    PubMed  PubMed Central  Google Scholar 

  15. Ichimiya T, Okubo Y, Suhara T, Sudo Y. Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry. 2001;49(1):20–7.

    CAS  PubMed  Google Scholar 

  16. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    PubMed  Google Scholar 

  17. Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguistics. 2000;13(2-3):189–214.

    Google Scholar 

  18. Frith CD, Frith U. Mechanisms of social cognition. Annu Rev Psychol. 2012;63:287–313.

    Google Scholar 

  19. Pavlova MA. Biological motion processing as a hallmark of social cognition. Cereb Cortex. 2012;22(5):981–95.

    PubMed  Google Scholar 

  20. Adolphs R. The neurobiology of social cognition. Curr Opin Neurobiol. 2001;11(2):231–9.

    CAS  PubMed  Google Scholar 

  21. Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 2006;7(4):268–77.

    CAS  PubMed  Google Scholar 

  22. Bzdok D, et al. Segregation of the human medial prefrontal cortex in social cognition. Front Hum Neurosci. 2013;7:232.

    PubMed  PubMed Central  Google Scholar 

  23. Van Overwalle F, et al. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72.

    PubMed  Google Scholar 

  24. Locke TM, Soden ME, Miller SM, Hunker A, Knakal C, Licholai JA, et al. Dopamine D1 receptor-positive neurons in the lateral nucleus of the cerebellum contribute to cognitive behavior. Biol Psychiatry. 2018;84:401–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Carta I, et al. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019;363(6424):eaav0581.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Badura A, Verpeut JL, Metzger JW, Pereira TD, Pisano TJ, Deverett B, et al. Normal cognitive and social development require posterior cerebellar activity. Elife. 2018;7:e36401.

    PubMed  PubMed Central  Google Scholar 

  27. Proville RD, Spolidoro M, Guyon N, Dugué GP, Selimi F, Isope P, et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17(9):1233–9.

    CAS  PubMed  Google Scholar 

  28. Parker KL, Kim YC, Kelley RM, Nessler AJ, Chen KH, Muller-Ewald VA, et al. Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol Psychiatry. 2017;22(5):647–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20(12):1744–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Choe KY, Sanchez CF, Harris NG, Otis TS, Mathews PJ. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain. Neuroimage. 2018;173:370–83.

    PubMed  Google Scholar 

  31. Chao OY, Marron Fernandez de Velasco E, Pathak SS, Maitra S, Zhang H, Duvick L, et al. Targeting inhibitory cerebellar circuitry to alleviate behavioral deficits in a mouse model for studying idiopathic autism. Neuropsychopharmacology. 2020;45(7):1159–70.

    PubMed  PubMed Central  Google Scholar 

  32. Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1-3):91–100.

    PubMed  PubMed Central  Google Scholar 

  33. Garg S, Sinha VK, Tikka SK, Mishra P, Goyal N. The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: a randomized rater blind-sham controlled study. Psychiatry Res. 2016;243:413–20.

    PubMed  Google Scholar 

  34. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    PubMed  PubMed Central  Google Scholar 

  35. Bullitt E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol. 1990;296(4):517–30.

    CAS  PubMed  Google Scholar 

  36. Stewart GR, Madelon P, Olney JW, Hartman BK, Cozzari C. N-methylaspartate: an effective tool for lesioning basal forebrain cholinergic neurons of the rat. Brain Res. 1986;369(1-2):377–82.

    CAS  PubMed  Google Scholar 

  37. Nitta K, Matsuzaki Y, Konno A, Hirai H. Minimal Purkinje cell-specific PCP2/L7 promoter virally available for rodents and non-human primates. Mol Ther Methods Clin Dev. 2017;6:159–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Franklin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates, compact. 3rd ed. Cambridge: Academic Press; 2008.

    Google Scholar 

  39. Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 2017;357(6350):503–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, et al. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep. 2018;8(1):3840.

    PubMed  PubMed Central  Google Scholar 

  41. Yang YM, Arsenault J, Bah A, Krzeminski M, Fekete A, Chao OY, et al. Identification of a molecular locus for normalizing dysregulated GABA release from interneurons in the Fragile X brain. Mol Psychiatry. 2020;25(9):2017–35.

    CAS  PubMed  Google Scholar 

  42. Chao OY, Yunger R, Yang YM. Behavioral assessments of BTBR T+Itpr3tf/J mice by tests of object attention and elevated open platform: implications for an animal model of psychiatric comorbidity in autism. Behav Brain Res. 2018;347:140–7.

    PubMed  Google Scholar 

  43. Chao OY, Pathak SS, Zhang H, Dunaway N, Li JS, Mattern C, et al. Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol Brain. 2020;13(1):111.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2(2):322–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Aspide R, Gironi Carnevale UA, Sergeant JA, Sadile AG. Non-selective attention and nitric oxide in putative animal models of attention-deficit hyperactivity Disorder. Behav Brain Res. 1998;95(1):123–33.

    CAS  PubMed  Google Scholar 

  46. Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci. 2016;17(1):45–59.

    CAS  PubMed  Google Scholar 

  47. Milani H, Steiner H, Huston JP. Analysis of recovery from behavioral asymmetries induced by unilateral removal of vibrissae in the rat. Behav Neurosci. 1989;103(5):1067–74.

    CAS  PubMed  Google Scholar 

  48. Simon P, Dupuis R, Costentin J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res. 1994;61(1):59–64.

    CAS  PubMed  Google Scholar 

  49. Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. 1988;31(1):47–59.

    CAS  PubMed  Google Scholar 

  50. Chao OY, de Souza Silva MA, Yang YM, Huston JP. The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev. 2020;113:373–407.

    PubMed  PubMed Central  Google Scholar 

  51. Chaudhuri A, Zangenehpour S, Rahbar-Dehgan F, Ye F. Molecular maps of neural activity and quiescence. Acta Neurobiol Exp (Wars). 2000;60(3):403–10.

    CAS  Google Scholar 

  52. Newman ME, Girvan M. Finding and evaluating community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys. 2004;69(2 Pt 2):026113.

    CAS  Google Scholar 

  53. Guimera R, Amaral LA. Cartography of complex networks: modules and universal roles. J Stat Mech. 2005;2005(P02001):nihpa35573.

    PubMed  Google Scholar 

  54. Guimera R, Nunes Amaral LA. Functional cartography of complex metabolic networks. Nature. 2005;433(7028):895–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kügler S, Kilic E, Bähr M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. 2003;10(4):337–47.

    PubMed  Google Scholar 

  56. Hitti FL, Siegelbaum SA. The hippocampal CA2 region is essential for social memory. Nature. 2014;508(7494):88–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith AS, Williams Avram SK, Cymerblit-Sabba A, Song J, Young WS. Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol Psychiatry. 2016;21(8):1137–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tanimizu T, Kenney JW, Okano E, Kadoma K, Frankland PW, Kida S. Functional connectivity of multiple brain regions required for the consolidation of social recognition memory. J Neurosci. 2017;37(15):4103–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sporns O, Betzel RF. Modular brain networks. Annu Rev Psychol. 2016;67:613–40.

    PubMed  Google Scholar 

  60. Little JP, Carter AG. Synaptic mechanisms underlying strong reciprocal connectivity between the medial prefrontal cortex and basolateral amygdala. J Neurosci. 2013;33(39):15333–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Milczarek MM, Vann SD, Sengpiel F. Spatial memory engram in the mouse retrosplenial cortex. Curr Biol. 2018;28(12):1975–80 e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ranganath C, Ritchey M. Two cortical systems for memory-guided behaviour. Nat Rev Neurosci. 2012;13(10):713–26.

    CAS  PubMed  Google Scholar 

  63. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11(2):457–87.

    PubMed  PubMed Central  Google Scholar 

  64. De Zeeuw CI, et al. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci. 2011;12(6):327–44.

    PubMed  Google Scholar 

  65. Payne HL, French RL, Guo CC, Nguyen-Vu TDB, Manninen T, Raymond JL. Cerebellar Purkinje cells control eye movements with a rapid rate code that is invariant to spike irregularity. Elife. 2019;8:e37102.

    PubMed  PubMed Central  Google Scholar 

  66. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19(6):338–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Insel TR, Fernald RD. How the brain processes social information: searching for the social brain. Annu Rev Neurosci. 2004;27:697–722.

    CAS  PubMed  Google Scholar 

  69. Simmons DH, Titley HK, Hansel C, Mason P. Behavioral Tests for Mouse Models of Autism: An Argument for the Inclusion of Cerebellum-Controlled Motor Behaviors. Neuroscience. 2020;S0306–4522(20):30304–3. https://doi.org/10.1016/j.neuroscience.2020.05.010.

    Article  CAS  Google Scholar 

  70. Haddon JE, Killcross S. Prefrontal cortex lesions disrupt the contextual control of response conflict. J Neurosci. 2006;26(11):2933–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Marquis JP, Killcross S, Haddon JE. Inactivation of the prelimbic, but not infralimbic, prefrontal cortex impairs the contextual control of response conflict in rats. Eur J Neurosci. 2007;25(2):559–66.

    PubMed  Google Scholar 

  72. Gao Z, Davis C, Thomas AM, Economo MN, Abrego AM, Svoboda K, et al. A cortico-cerebellar loop for motor planning. Nature. 2018;563(7729):113–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. van Kerkhof LW, Damsteegt R, Trezza V, Voorn P, Vanderschuren LJMJ. Social play behavior in adolescent rats is mediated by functional activity in medial prefrontal cortex and striatum. Neuropsychopharmacology. 2013;38(10):1899–909.

    PubMed  PubMed Central  Google Scholar 

  74. Vanderschuren LJ, Achterberg EJ, Trezza V. The neurobiology of social play and its rewarding value in rats. Neurosci Biobehav Rev. 2016;70:86–105.

    PubMed  PubMed Central  Google Scholar 

  75. Jackman SL, Chen CH, Offermann HL, Drew IR, Harrison BM, Bowman AM, et al. Cerebellar Purkinje cell activity modulates aggressive behavior. Elife. 2020;9:e53229.

    PubMed  PubMed Central  Google Scholar 

  76. Wood M, Adil O, Wallace T, Fourman S, Wilson SP, Herman JP, et al. Infralimbic prefrontal cortex structural and functional connectivity with the limbic forebrain: a combined viral genetic and optogenetic analysis. Brain Struct Funct. 2019;224(1):73–97.

    PubMed  Google Scholar 

  77. Hughes P, Lawlor P, Dragunow M. Basal expression of Fos, Fos-related, Jun, and Krox 24 proteins in rat hippocampus. Brain Res Mol Brain Res. 1992;13(4):355–7.

    CAS  PubMed  Google Scholar 

  78. Luckman SM, Dyball RE, Leng G. Induction of c-fos expression in hypothalamic magnocellular neurons requires synaptic activation and not simply increased spike activity. J Neurosci. 1994;14(8):4825–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Guell X, Gabrieli JDE, Schmahmann JD. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage. 2018;172:437–49.

    PubMed  Google Scholar 

  80. Guell X, Schmahmann JD, Gabrieli JDE, Ghosh SS. Functional gradients of the cerebellum. Elife. 2018;7:e36652.

    PubMed  PubMed Central  Google Scholar 

  81. Zeidler Z, Hoffmann K, Krook-Magnuson E. HippoBellum: acute cerebellar modulation alters hippocampal dynamics and function. J Neurosci. 2020;40(36):6910–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22(8):1371–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum - insights from the clinic. Cerebellum. 2007;6(3):254–67.

    PubMed  Google Scholar 

  84. Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83(3):518–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64(2):81–8.

    PubMed  PubMed Central  Google Scholar 

  86. Diener HC, Dichgans J. Pathophysiology of cerebellar ataxia. Mov Disord. 1992;7(2):95–109.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AAV8-Pcp2-hM3Dq-mCherry was generated by Dr. Ezequiel Marron Fernandez de Velasco in the University of Minnesota Viral Vector and Cloning Core with a plasmid from Addgene (a gift from Dr. Bryan Roth). AAV5-hSyn-EGFP was purchased from Addgene (a gift from Dr. Bryan Roth). We thank Dr. Matthew Slattery in our department for his invaluable inputs.

Funding

This study was supported by the National Institute of Neurological Disorders and Stroke (NINDS) of the National Institutes of Health (NIH) grant R15NS112964 to YMY, the Winston and Maxine Wallin Neuroscience Discovery Fund to YMY, and the University of Minnesota faculty start-up fund to YMY. We also appreciate the funding support from the DFG to JPH (HU 306/27-3).

Author information

Authors and Affiliations

Authors

Contributions

OYC and YMY designed the project, performed the experiments, and analyzed the data. HZ and SSP contributed to data analysis and colony maintenance. JPH provided critical inputs and technical consultations. OYC, YMY, and JPH wrote the manuscript.

Corresponding author

Correspondence to Yi-Mei Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, O.Y., Zhang, H., Pathak, S.S. et al. Functional Convergence of Motor and Social Processes in Lobule IV/V of the Mouse Cerebellum. Cerebellum 20, 836–852 (2021). https://doi.org/10.1007/s12311-021-01246-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01246-7

Keywords

Navigation