Advertisement

Posterior Fossa Arachnoid Cyst in a Pediatric Population is Associated with Social Perception and Rest Cerebral Blood Flow Abnormalities

  • Elza RechtmanEmail author
  • Stephanie Puget
  • Ana Saitovitch
  • Hervé Lemaitre
  • Ludovic Fillion
  • Jean-Marc Tacchella
  • Jennifer Boisgontier
  • Marie-Laure Cuny
  • Nathalie Boddaert
  • Monica Zilbovicius
Original Paper

Abstract

Posterior fossa arachnoid cysts (PFAC) may produce not only neurological symptoms but also other symptoms still poorly understood such as behavioral and learning deficits, awkwardness, and difficulties in social interaction. These subtle social impairments have not been formally described and their underlying brain mechanisms remain unknown. In the present case-control study, we aimed to empirically characterize social impairments in a pediatric population with PFAC using eye tracking. In addition, we investigated putative functional cortical abnormalities in these children using arterial spin labeling magnetic resonance imaging. Overall, 15 patients with PFAC (3f, age = 9.4 ± 4 years) and 43 typically developing volunteer children (16f, age = 9.3 ± 3.6 years) were enrolled in this study. Eye tracking was used to record gaze patterns during visualization of social interaction scenes. Viewing times to faces of characters and non-social background were analyzed. A voxel-wise whole-brain analysis was performed to investigate rest cerebral blood flow (CBF) abnormalities. Significantly reduced viewing time to faces was observed in patients compared with controls (p < 0.01). A ROC curve analysis revealed that 30% of PFAC patients presented viewing time to the face lower than the cutoff, while none of the controls did. The whole-brain analysis revealed a significant decrease in rest CBF in PFAC patients compared with controls bilaterally in the superior temporal gyrus and the temporoparietal junction (TPJ) (p < 0.05 FWE). These results suggest that early life PFAC may have an impact on functional activity of the temporal lobe, which could be associated with social perception deficits.

Keywords

Arachnoid cyst Cerebellum Neuroimaging Social Perception Eye tracking Cerebral blood flow 

Notes

Funding Information

The study was supported by Fondation de France (2011-00023952). ER and AS received funding from Fondation Orange. The eye tracking device was financed by “Les Amis d’Arthur” association.

Compliance with Ethical Standards

Ethics Approval

The study was approved by the Ethical Committee of Necker Hospital, Paris, France.

Competing Interests

The authors declare that they have no competing interests.

References

  1. 1.
    Di Trapani G, Di Rocco C, Pocchiari M, Abbamondi AL. Arachnoid cysts in children: ultrastructural findings. Acta Neuropathol Suppl. 1981;7:392–5.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Catala M, Poirier J. Arachnoid cysts: histologic, embryologic and physiopathologic review. Rev Neurol (Paris). 1998;154(6–7):489–501.Google Scholar
  3. 3.
    Haberkamp TJ, Monsell EM, House WF, Levine SC, Piazza L. Diagnosis and treatment of arachnoid cysts of the posterior fossa. Otolaryngol--Head Neck Surg Off J Am Acad Otolaryngol-Head Neck Surg. 1990;103(4):610–4.CrossRefGoogle Scholar
  4. 4.
    Cuny ML, Pallone M, Piana H, Boddaert N, Sainte-Rose C, Vaivre-Douret L, et al. Neuropsychological improvement after posterior fossa arachnoid cyst drainage. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg. 2017;33(1):135–41.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Pradilla G, Jallo G. Arachnoid cysts: case series and review of the literature. Neurosurg Focus. 2007;22(2):E7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Guell X, Anteraper SA, Ghosh SS, Gabrieli JDE, Schmahmann JD. Neurodevelopmental and psychiatric symptoms in patients with a cyst compressing the cerebellum: an ongoing enigma. Cerebellum Lond Engl. 2019.  https://doi.org/10.1007/s12311-019-01050-4.
  7. 7.
    da Silva JA, Alves A, Talina M, Carreiro S, Guimarães J, Xavier M. Arachnoid cyst in a patient with psychosis: case report. Ann General Psychiatry. 2007;6:16.CrossRefGoogle Scholar
  8. 8.
    Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Dickson PE, Cairns J, Goldowitz D, Mittleman G. Cerebellar contribution to higher and lower order rule learning and cognitive flexibility in mice. Neuroscience. 2017 14;345:99–109PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain J Neurol. 2000;123(Pt 5):1051–61.CrossRefGoogle Scholar
  11. 11.
    Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. NeuroImage. 2014;86:554–72.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Schmahmann JD. Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci. 1998;2(9):362–71.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hoche F, Guell X, Sherman JC, Vangel MG, Schmahmann JD. Cerebellar contribution to social cognition. Cerebellum Lond Engl. 2016;15(6):732–43.CrossRefGoogle Scholar
  15. 15.
    Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Baetens K, Ma N, Steen J, Van Overwalle F. Involvement of the mentalizing network in social and non-social high construal. Soc Cogn Affect Neurosci. 2014;9(6):817–24.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Van Hoeck N, Begtas E, Steen J, Kestemont J, Vandekerckhove M, Van Overwalle F. False belief and counterfactual reasoning in a social environment. NeuroImage. 2014;90:315–25.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017;16(2):552–76.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Heleven E, van Dun K, Van Overwalle F. The posterior cerebellum is involved in constructing social action sequences: an fMRI study. Sci Rep. 2019;9(1):11110.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Baillieux H, De Smet HJ, Lesage G, Paquier P, De Deyn PP, Mariën P. Neurobehavioral alterations in an adolescent following posterior fossa tumor resection. Cerebellum Lond Engl. 2006;5(4):289–95.CrossRefGoogle Scholar
  21. 21.
    Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum-insights from the clinic. Cerebellum Lond Engl. 2007;6(3):254–67.CrossRefGoogle Scholar
  22. 22.
    Paulus KS, Magnano I, Conti M, Galistu P, D’Onofrio M, Satta W, et al. Pure post-stroke cerebellar cognitive affective syndrome: a case report. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2004;25(4):220–4.Google Scholar
  23. 23.
    Mothersill O, Tangney N, Morris DW, McCarthy H, Frodl T, Gill M, et al. Further evidence of alerted default network connectivity and association with theory of mind ability in schizophrenia. Schizophr Res. 2017;184:52–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang SS-H, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83(3):518–32.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Moberget T, Andersson S, Lundar T, Due-Tønnessen BJ, Heldal A, Endestad T, et al. Long-term supratentorial brain structure and cognitive function following cerebellar tumour resections in childhood. Neuropsychologia. 2015;69:218–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Stoodley CJ, Limperopoulos C. Structure-function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin Fetal Neonatal Med. 2016;21(5):356–64.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Limperopoulos C, Bassan H, Gauvreau K, Robertson RL, Sullivan NR, Benson CB, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics. 2007;120(3):584–93.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Puget S, Boddaert N, Viguier D, Kieffer V, Bulteau C, Garnett M, et al. Injuries to inferior vermis and dentate nuclei predict poor neurological and neuropsychological outcome in children with malignant posterior fossa tumors. Cancer. 2009;115(6):1338–47.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Brossard-Racine M, du Plessis AJ, Limperopoulos C. Developmental cerebellar cognitive affective syndrome in ex-preterm survivors following cerebellar injury. Cerebellum Lond Engl. 2015;14(2):151–64.CrossRefGoogle Scholar
  30. 30.
    Dholakia SY, Shah PS, Prakash S. Conversion disorder in a patient with posterior fossa arachnoid cyst. J Neuropsychiatr Clin Neurosci. 2010;22(1):123.e7–8.CrossRefGoogle Scholar
  31. 31.
    Averback P. Developmental arachnoid cysts of the posterior fossa—an analysis of 13 cases. Acta Neurochir. 1977;39(3):181–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Gewirtz G, Squires-Wheeler E, Sharif Z, Honer WG. Results of computerised tomography during first admission for psychosis. Br J Psychiatry J Ment Sci. 1994;164(6):789–95.CrossRefGoogle Scholar
  33. 33.
    Pierce K, Marinero S, Hazin R, McKenna B, Barnes CC, Malige A. Eye tracking reveals abnormal visual preference for geometric images as an early biomarker of an autism spectrum disorder subtype associated with increased symptom severity. Biol Psychiatry. 2016;79(8):657–66.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Constantino JN, Kennon-McGill S, Weichselbaum C, Marrus N, Haider A, Glowinski AL, et al. Infant viewing of social scenes is under genetic control and atypical in autism. Nature. 2017;547(7663):340–4.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jones W, Klin A. Attention to eyes is present but in decline in 2–6-month-olds later diagnosed with autism. Nature. 2013;504(7480):427–31.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Saitovitch A, Lemaitre H, Rechtman E, Vinçon-Leite A, Calmon R, Grévent D, et al. Neural and behavioral signature of human social perception. Sci Rep. 2019 Jun 25;9(1):1–8. .Google Scholar
  37. 37.
    Zhang N, Gordon ML, Goldberg TE. Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease. Neurosci Biobehav Rev. 2017;72:168–75.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Holiga Š, Sambataro F, Luzy C, Greig G, Sarkar N, Renken RJ, et al. Test-retest reliability of task-based and resting-state blood oxygen level dependence and cerebral blood flow measures. PLoS ONE [Internet]. 2018 Nov 8 [cited 2019 Nov 7];13(11). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224062/.
  39. 39.
    Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015 Jan;73(1):102–16.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review. J Cereb Blood Flow Metab. 2016 May;36(5):842–61.CrossRefGoogle Scholar
  41. 41.
    Saitovitch A, Popa T, Lemaitre H, Rechtman E, Lamy J-C, Grévent D, et al. Tuning eye-gaze perception by transitory STS inhibition. Cereb Cortex N Y N 1991. 2016;26(6):2823–31.Google Scholar
  42. 42.
    Chevallier C, Parish-Morris J, McVey A, Rump KM, Sasson NJ, Herrington JD, et al. Measuring social attention and motivation in autism spectrum disorder using eye-tracking: stimulus type matters. Autism Res Off J Int Soc Autism Res. 2015;8(5):620–8.CrossRefGoogle Scholar
  43. 43.
    Saitovitch A, Bargiacchi A, Chabane N, Phillipe A, Brunelle F, Boddaert N, et al. Studying gaze abnormalities in autism: which type of stimulus to use? Open J Psychiatry. 2013;03(02):32–8.CrossRefGoogle Scholar
  44. 44.
    Dangouloff-Ros V, Deroulers C, Foissac F, Badoual M, Shotar E, Grévent D, et al. Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology. 2016;281(2):553–66.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zaharchuk G, Bammer R, Straka M, Shankaranarayan A, Alsop DC, Fischbein NJ, et al. Arterial spin-label imaging in patients with normal bolus perfusion-weighted MR imaging findings: pilot identification of the borderzone sign. Radiology. 2009;252(3):797–807.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wilke M, Holland SK, Altaye M, Gaser C. Template-O-Matic: a toolbox for creating customized pediatric templates. NeuroImage. 2008;41(3):903–13.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    D’Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum Lond Engl. 2011;10(3):600–10.CrossRefGoogle Scholar
  48. 48.
    Krogh-Jespersen S, Liberman Z, Woodward AL. Think fast! The relationship between goal prediction speed and social competence in infants. Dev Sci. 2015;18(5):815–23.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Falck-Ytter T, Bölte S, Gredebäck G. Eye tracking in early autism research. J Neurodev Disord. 2013;5(1):28.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum Lond Engl. 2016;15(3):369–91.CrossRefGoogle Scholar
  51. 51.
    Brothers L. The neural basis of primate social communication. Motiv Emot. 1990 Jun 1;14(2):81–91.CrossRefGoogle Scholar
  52. 52.
    Adolphs R. Cognitive neuroscience of human social behaviour. Nat Rev Neurosci. 2003;4(3):165–78.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kaiser MD, Hudac CM, Shultz S, Lee SM, Cheung C, Berken AM, et al. Neural signatures of autism. Proc Natl Acad Sci U S A. 2010;107(49):21223–8.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Schurz M, Radua J, Aichhorn M, Richlan F, Perner J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev. 2014;42:9–34.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Saxe R, Powell LJ. It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol Sci. 2006;17(8):692–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Deen B, Koldewyn K, Kanwisher N, Saxe R. Functional organization of social perception and cognition in the superior temporal sulcus. Cereb Cortex N Y N 1991, 2015;25(11):4596–609.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Lahnakoski JM, Glerean E, Salmi J, Jääskeläinen IP, Sams M, Hari R, et al. Naturalistic FMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception. Front Hum Neurosci. 2012;6:233.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Van Overwalle F, Van de Steen F, Mariën P. Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies. Cogn Affect Behav Neurosci. 2019;19(1):211–23.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Chen S, Guan M, Lian H-J, Ma L-J, Shang J-K, He S, et al. Crossed cerebellar diaschisis detected by arterial spin-labeled perfusion magnetic resonance imaging in subacute ischemic stroke. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc. 2014;23(9):2378–83.CrossRefGoogle Scholar
  60. 60.
    Baron JC, Bousser MG, Comar D, Castaigne P. “Crossed cerebellar diaschisis” in human supratentorial brain infarction. Trans Am Neurol Assoc. 1981;105:459–61.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Nakahachi T, Ishii R, Canuet L, Iwase M. Implied functional crossed cerebello-cerebral diaschisis and interhemispheric compensation during hand grasping more than 20 years after unilateral cerebellar injury in early childhood. Cerebellum Ataxias. 2015;2:15.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Komaba Y, Osono E, Kitamura S, Katayama Y. Crossed cerebellocerebral diaschisis in patients with cerebellar stroke. Acta Neurol Scand. 2000;101(1):8–12.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Mariën P, Baillieux H, De Smet HJ, Engelborghs S, Wilssens I, Paquier P, et al. Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: a case study. Cortex J Devoted Study Nerv Syst Behav. 2009;45(4):527–36.CrossRefGoogle Scholar
  64. 64.
    Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sokolov AA, Erb M, Grodd W, Pavlova MA. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cereb Cortex N Y N 1991. 2014;24(3):626–32.Google Scholar
  66. 66.
    Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Cerebellar areas dedicated to social cognition? A comparison of meta-analytic and connectivity results. Soc Neurosci. 2015;10(4):337–44.PubMedGoogle Scholar
  68. 68.
    Leggio M, Olivito G. Topography of the cerebellum in relation to social brain regions and emotions. Handb Clin Neurol. 2018;154:71–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Boltshauser E, Martin F, Altermatt S. Outcome in children with space-occupying posterior fossa arachnoid cysts. Neuropediatrics. 2002;33(3):118–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Karabatsou K, Hayhurst C, Buxton N, O’Brien DF, Mallucci CL. Endoscopic management of arachnoid cysts: an advancing technique. J Neurosurg. 2007;106(6 Suppl):455–62.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Marin-Sanabria EA, Yamamoto H, Nagashima T, Kohmura E. Evaluation of the management of arachnoid cyst of the posterior fossa in pediatric population: experience over 27 years. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg. 2007;23(5):535–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elza Rechtman
    • 1
    • 2
    Email author
  • Stephanie Puget
    • 3
  • Ana Saitovitch
    • 1
  • Hervé Lemaitre
    • 1
    • 4
  • Ludovic Fillion
    • 1
  • Jean-Marc Tacchella
    • 1
  • Jennifer Boisgontier
    • 1
  • Marie-Laure Cuny
    • 3
    • 5
    • 6
  • Nathalie Boddaert
    • 1
  • Monica Zilbovicius
    • 1
  1. 1.INSERM U1000, Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HPUniversity René Descartes, Institut Imagine and UMR 1163ParisFrance
  2. 2.Department of Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of Pediatric Neurosurgery, Hôpital Necker Enfants Malades, AP-HPUniversity René Descartes, Pres Sorbonne Paris CitéParisFrance
  4. 4.Faculté De MédecineUniversité Paris-SudOrsayFrance
  5. 5.Laboratory of Memory and Cognition, Institute of PsychologyUniversity Paris Descartes, Sorbonne Paris CitéParisFrance
  6. 6.CESP, University Paris-Sud, UVSQ, INSERM 1018University Paris-SaclayParisFrance

Personalised recommendations