Functional Changes of Mentalizing Network in SCA2 Patients: Novel Insights into Understanding the Social Cerebellum

  • Giusy OlivitoEmail author
  • L. Siciliano
  • S. Clausi
  • M. Lupo
  • S. Romano
  • M. Masciullo
  • M. Molinari
  • M. Cercignani
  • M. Bozzali
  • M. Leggio
Original Paper


In recent years, increasing evidence of the cerebellar role in social cognition has emerged. The cerebellum has been shown to modulate cortical activity of social brain regions serving as a regulator of function-specific mentalizing and mirroring processes. In particular, a mentalizing area in the posterior cerebellum, specifically Crus II, is preferentially recruited for more complex and abstract forms of social processing, together with mentalizing cerebral areas including the dorsal medial prefrontal cortex (dmPFC), the temporo-parietal junction (TPJ), and the precuneus. In the present study, the network-based statistics approach was used to assess functional connectivity (FC) differences within this mentalizing cerebello-cerebral network associated with a specific cerebellar damage. To this aim, patients affected by spinocerebellar ataxia type 2 (SCA2), a neurodegenerative disease specifically affecting regions of the cerebellar cortex, and age-matched healthy subjects have been enrolled. The dmPFC, left and right TPJ, the precuneus, and the cerebellar Crus II were used as regions of interest to construct the mentalizing network to be analyzed and evaluate pairwise functional relations between them. When compared with controls, SCA2 patients showed altered internodal connectivity between dmPFC, left (L-) and right (R-) TPJ, and right posterior cerebellar Crus II.

The present results indicate that FC changes affect a function-specific mentalizing network in patients affected by cerebellar damage. In particular, they allow to better clarify functional alteration mechanisms driven by the cerebellar damage associated with SCA2 suggesting that selective cortico-cerebellar functional disconnections may underlie patients’ social impairment in domain-specific complex and abstract forms of social functioning.


Cerebellum Cerebral cortex Resting-state fMRI Social cognition Nodes 


Funding Information

This research was partially supported by the Italian Ministry of Health (Ricerca Corrente). This work was financially supported by the Ministry of Education, Universities and Research (MIUR) to Maria Leggio (Grant Number RM11715C7E67E525) and by the Italian Ministry of Health to Silvia Clausi (Grant Number GR-2013-02354888).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest


  1. 1.
    Clausi S, Lupo M, Olivito G, Siciliano L, Contento MP, Aloise F, et al. Depression disorder in patients with cerebellar damage: awareness of the mood state. J Affect Disord. 2019a;245:386–93.PubMedCrossRefGoogle Scholar
  2. 2.
    Clausi S, Olivito G, Lupo M, Siciliano L, Bozzali M, Leggio M. The cerebellar predictions for social interactions: theory of mind abilities in patients with degenerative cerebellar atrophy. Front Cell Neurosci. 2019b;12:510.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Leggio M, Olivito G. Topography of the cerebellum in relation to social brain regions and emotions. Handb Clin Neurol. 2018;154:71–84 Review.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Lupo M, Olivito G, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. The cerebellar topography of attention sub-components in spinocerebellar ataxia type 2. Cortex. 2018a;108:35–49.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lupo M, Olivito G, Siciliano L, Masciullo M, Molinari M, Cercignani M, et al. Evidence of cerebellar involvement in the onset of a manic state. Front Neurol. 2018b;9:774.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lupo M, Olivito G, Siciliano L, Masciullo M, Bozzali M, Molinari M, et al. Development of a psychiatric disorder linked to cerebellar lesions. Cerebellum. 2018c;17(4):438–46.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Clausi S, Iacobacci C, Lupo M, Olivito G, Molinari M, Leggio M. The role of the cerebellum in unconscious and conscious processing of emotions: a review. Applied Sciences (Switzerland). 2017;7(5):521 Review.CrossRefGoogle Scholar
  8. 8.
    Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141:248–70.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3672–86.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Mar RA. The neural bases of social cognition and story comprehension. Annu Rev Psychol. 2011;62:103–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Calder AJ, Lawrence AD, Young AW. Neuropsychology of fear and loathing. Nat Rev Neurosci. 2001;2:352–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Kipps CM, Duggins AJ, McCusker EA, Calder AJ. Disgust and happiness recognition correlate with anteroventral insula and amygdala volume respectively in preclinical Huntington’s disease. J Cogn Neurosci. 2007;19:1206–17.PubMedCrossRefGoogle Scholar
  14. 14.
    Biswal BB, Van Kylen J, Hyde JS. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 1997;10:165–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Krienen FM, Buckner RL. Segregated frontocerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Olivito G, Lupo M, Laghi F, Clausi S, Baiocco R, Cercignani M, et al. Lobular patterns of cerebellar resting-state connectivity in adults with autism spectrum disorder. Eur J Neurosci. 2018a;47(6):729–35.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, et al. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017a;16:283–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Khan AJ, Nair A, Keown CL, Dakto MC, Lincoln AJ, Muller RA. Cerebro-cerebellar resting state functional connectivity in children and adolescents with autism spectrum disorder. Biol Psychiatry. 2015;78:625–34.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    D’Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9:408 Review.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Van Overwalle F, D’aes T, Mariën P. Social cognition and the cerebellum: a meta-analytic connectivity analysis. Hum Brain Map. 2015;36:5137–54.CrossRefGoogle Scholar
  25. 25.
    Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. Neuroimage. 2016;124:248–55.PubMedCrossRefGoogle Scholar
  26. 26.
    Van Overwalle F, Van de Steen F, Mariën P. Dynamic causal modeling of the effective connectivity between the cerebrum and cerebellum in social mentalizing across five studies. Cogn Affect Behav Neurosci. 2019a;19(1):211–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14.PubMedCrossRefGoogle Scholar
  28. 28.
    Giacondo F, Curcio G. Spinocerebellar ataxia: a critical review of cognitive and socio-cognitive deficits. Int J Neurosci. 2018;128(2):182–91.CrossRefGoogle Scholar
  29. 29.
    Zalensky A, Fornito A, Bullmore ET. Network-based statistic, identifying differences in brain networks. Neuroimage. 2010;53:1197–207.CrossRefGoogle Scholar
  30. 30.
    Della Nave R, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E, et al. Brain structural damage in spinocerebellar ataxia type 2. A voxel-based morphometry study. Mov Disord. 2008;23(6):899–903.PubMedCrossRefGoogle Scholar
  31. 31.
    Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2),: morphometric analyses in 11 autopsies. Acta Neuropathol (Berl). 1999;97:306–10.CrossRefGoogle Scholar
  32. 32.
    Iwabuchi K, Tsuchiya K, Uchihara T, Yagishita S. Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations. Rev Neurol (Paris). 1999;155:255–70.Google Scholar
  33. 33.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wechsler D, Wais R. Wechsler Adult Intelligence Scale Revised. Firenze: Organizzazioni Speciali; 1981.Google Scholar
  35. 35.
    Orsini A, Laicardi C. WAIS-R-Contributo alla Taratura Italiana. Firenze: Organizzazioni Speciali; 1997.Google Scholar
  36. 36.
    Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2. J Neurol. 2018b;265(3):597–606.PubMedCrossRefGoogle Scholar
  37. 37.
    Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. Microstructural MRI basis of the cognitive functions in patients with spinocerebellar ataxia type 2. Neuroscience. 2017b;366:44–53.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Brett M, Anton JL, Valabregue R, Poline JB. Region of interest analysis using an SPM toolbox [abstract] Presented at the 8th International Conference on Functional Mapping of the Human Brain, June 2-6, 2002, Sendai, Japan. Available on CD-ROM in NeuroImage Vol 16, No 2.Google Scholar
  39. 39.
    Serra L, Cercignani M, Bruschini M, Cipolotti L, Mancini M, Silvestri G, Petrucci A, Bucci E, Antonini G, Licchelli L, Spanò B, Giacanelli M, Caltagirone C, Meola G, Bozzali M. “I know that you know that I know”, neural substrates associated with social cognition deficits in DM1 patients. PLoS One 2016;11(6).PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Xia M, Wang J, He Y. BrainNet Viewer, a network visualization tool for human brain connectomics. PLoS One. 2013;8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    D’Mello AM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar grey matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 2015;7:631–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Allen G. The cerebellum in autism. Clinical Neuropsychiatry. 2005;2(6):321–37.Google Scholar
  43. 43.
    Fatemi SH, Halt AR. stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebella cortices. Biological Psychiatry. 2002;52(8):805–10.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123:836–44.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Courchesne E, Townsend J, Saitoh O. The brain in infantile autism: posterior fossa structures are abnormal. Neurology. 1994;44:214–23.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Van Overwalle F, Manto M, Leggio M, Delgado-García JM. The sequencing process generated by the cerebellum crucially contributes to social interactions. Med Hypothesis. 2019;128:33–42.CrossRefGoogle Scholar
  47. 47.
    Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA), types 1,2,3, and 6. Cerebellum. 2010;9:433–42.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260:3134–43.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Van Overwalle F. Social cognition and the brain: a meta-analysis. Hum BrainMapp. 2009;30:829–58.Google Scholar
  50. 50.
    Schurz M, Radua J, Aichhorn M, Richlan F, Perner J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev. 2014;42:9–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Saxe R, Powell LJ. It’s the thought that counts: specific brain regions for one component of theory of mind. Psychological Science. 2006;17:692–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Saxe R, Wexler A. Making sense of another mind: the role of the right temporo-parietal junction. Neuropsychologia. 2005;43:1391–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Ma N, Vandekerckhove M, Van Hoeck N, Van Overwalle F. Distinct recruitment of temporo-parietal junction and medial prefrontal cortex in behavior understanding and trait identification. Soc Neurosci. 2012;7(6):591–605.PubMedCrossRefGoogle Scholar
  54. 54.
    Harris LT, Todorov A, Fiske ST. Attributions on the brain: neuro-imaging dispositional inferences, beyond theory of mind. NeuroImage. 2005;28:763–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Saxe R. Uniquely human social cognition. Current Opinion in Neurobiology. 2006;16:235–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Decety J, Sommerville JA. Shared representations between self and other: a social cognitive neuroscience view. Trends Cogn Sci. 2003;7(12):527–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain J Neurol. 2006;129(Pt 3):564–83.CrossRefGoogle Scholar
  58. 58.
    Raichle EM, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Schilbach L, Eickhoff SB, Rotarska-Jagiela A, Fink GR, Vogeley K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the default system of the brain. Conscious Cogn. 2008;17:457–67.PubMedCrossRefGoogle Scholar
  60. 60.
    Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.PubMedCrossRefGoogle Scholar
  61. 61.
    Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Olivito G, Cercignani M, Lupo M, Iacobacci C, Clausi S, Romano S, et al. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: a network based statistics analysis. Neuroimage Clin. 2017c;14:719–25.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.PubMedCrossRefGoogle Scholar
  65. 65.
    Kawai Y, Suenaga M, Watanabe H, Sobue G. Cognitive impairment in spinocerebellar degeneration. Eur Neurol. 2009;61:257–68.PubMedCrossRefGoogle Scholar
  66. 66.
    Van Overwalle F, De Coninck S, Heleven E, Perrotta G, Taib NOB, Manto M, et al. The role of the cerebellum in reconstructing social action sequences: a pilot study. Soc Cogn Affect Neurosci. 2019b;14(5):549–58.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Filip P, Gallea C, Lehéricy S, Lungu O, Bareš M. Neural Scaffolding as the foundation for stable performance of aging cerebellum. Cerebellum. 2019;18(3):500–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Giusy Olivito
    • 1
    • 2
    Email author
  • L. Siciliano
    • 3
  • S. Clausi
    • 1
    • 4
  • M. Lupo
    • 4
  • S. Romano
    • 5
  • M. Masciullo
    • 6
  • M. Molinari
    • 7
  • M. Cercignani
    • 8
  • M. Bozzali
    • 8
    • 9
  • M. Leggio
    • 1
    • 4
  1. 1.Department of PsychologySapienza University of RomeRomeItaly
  2. 2.IRCCS Santa Lucia FoundationRomeItaly
  3. 3.PhD Program in Behavioral NeuroscienceSapienza University of RomeRomeItaly
  4. 4.Ataxia LaboratoryIRCCS Santa Lucia FoundationRomeItaly
  5. 5.Department of Neurosciences, Mental Health and Sensory Organs (NESMOS)“Sapienza” University of Rome-Sant’Andrea HospitalRomeItaly
  6. 6.SPInal REhabilitation LabIRCCS Fondazione Santa LuciaRomeItaly
  7. 7.Robotic Neurorehabilitation Lab, Neurorehabilitation 1 and Spinal CenterIRCCS Fondazione Santa LuciaRomeItaly
  8. 8.Clinical Imaging Science CenterBrighton and Sussex Medical SchoolBrightonUK
  9. 9.Neuroimaging LaboratoryIRCCS Santa Lucia FoundationRomeItaly

Personalised recommendations