Dynamic Expression and New Functions of Early B Cell Factor 2 in Cerebellar Development
- 117 Downloads
Abstract
The collier/Olf1/EBF family genes encode helix-loop-helix transcription factors (TFs) highly conserved in evolution, initially characterized for their roles in the immune system and in various aspects of neural development. The Early B cell Factor 2 (Ebf2) gene plays an important role in the establishment of cerebellar cortical topography and in Purkinje cell (PC) subtype specification. In the adult cerebellum, Ebf2 is expressed in zebrin II (ZII)-negative PCs, where it suppresses the ZII+ molecular phenotype. However, it is not clear whether Ebf2 is restricted to a PC subset from the onset of its expression or is initially distributed in all PCs and silenced only later in the prospective ZII+ subtype. Moreover, the dynamic distribution and role of Ebf2 in the differentiation of other cerebellar cells remain unclarified. In this paper, by genetic fate mapping, we determine that Ebf2 mRNA is initially found in all PC progenitors, suggesting that unidentified upstream factors silence its expression before completion of embryogenesis. Moreover we show Ebf2 activation in an early born subset of granule cell (GC) precursors homing in the anterior lobe. Conversely, Ebf2 transcription is repressed in other cerebellar cortex interneurons. Last, we show that, although Ebf2 only labels the medial cerebellar nuclei (CN) in the adult cerebellum, the gene is expressed prenatally in projection neurons of all CN. Importantly, in Ebf2 nulls, fastigial nuclei are severely hypocellular, mirroring the defective development of anterior lobe PCs. Our findings further clarify the roles of this terminal selector gene in cerebellar development.
Keywords
Ebf2 gene COE transcription factors Cerebellar development Purkinje cell development Purkinje cell subtype specification Cerebellar cortex topography Cerebellar nuclei development Fastigial nuclei development Cerebellar granule cell subtypesNotes
Acknowledgments
Oocyte injections were performed at the Center for Conditional Mutagenesis (CFCM), San Raffaele Scientific Institute. Image analysis was carried out at ALEMBIC, an advanced microscopy laboratory established by the San Raffaele Scientific Institute and University.
Funding
G.G.C.’s research was funded by the Italian Telethon Foundation, grant GGP13146. O.C. was the recipient of a grant from the Italian Ministry of Health (Ministero della Salute Ricerca Finalizzata 2011-PE-2011-02347716). R.H. was supported by an award from the Canadian Institutes of Health Research.
Compliance with Ethical Standards
All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The experimental plan was designed in agreement with the stipulations of the San Raffaele Institutional Animal Care and Use Committee (permit number 336).
Conflict of Interest
The authors declare that they have no conflicts of interest.
References
- 1.Armstrong CL, Hawkes R. Pattern formation in the cerebellum: Morgan and Claypool; 2013.Google Scholar
- 2.Hawkes R, Gravel C. The modular cerebellum. Prog Neurobiol. 1991;36(4):309–27.CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Hawkes R. An anatomical model of cerebellar modules. Prog Brain Res. 1997;114:39–52.CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Eisenman LM. Antero-posterior boundaries and compartments in the cerebellum: evidence from selected neurological mutants. Prog Brain Res. 2000;124:23–30.CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Sillitoe R, Morphology JA. Molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol. 2007;23:549–77.CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10(9):670–81.CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, et al. Cerebellar modules and their role as operational cerebellar processing units. Cerebellum. 2018.Google Scholar
- 8.Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291(4):538–52.CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Ahn AH, Dziennis S, Hawkes R, Herrup K. The cloning of zebrin II reveals its identity with aldolase C. Development. 1994;120(8):2081–90.PubMedPubMedCentralGoogle Scholar
- 10.Chung S-H, Marzban H, Croci L, Consalez G, Hawkes R. Purkinje cell subtype specification in the cerebellar cortex: Ebf2 acts to repress the Zebrin II-positive Purkinje cell phenotype. Neuroscience. 2008;153:721–32.CrossRefGoogle Scholar
- 11.Croci L, Chung SH, Masserdotti G, Gianola S, Bizzoca A, Gennarini G, et al. A key role for the HLH transcription factor EBF2COE2,O/E-3 in Purkinje neuron migration and cerebellar cortical topography. Development. 2006;133(14):2719–29.CrossRefGoogle Scholar
- 12.Leto K, Arancillo M, Becker EB, Buffo A, Chiang C, Ding B, et al. Consensus paper: cerebellar development. Cerebellum. 2015.Google Scholar
- 13.Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47(2):201–13.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, et al. Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A. 2007;104(12):5193–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, et al. Math1 is essential for genesis of cerebellar granule neurons. Nature. 1997;390(6656):169–72.CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48(1):17–24.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48(1):31–43.CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, et al. Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci. 2006;26(36):9184–95.CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Dastjerdi FV, Consalez GG, Hawkes R. Pattern formation during development of the embryonic cerebellum. Front Neuroanat. 2012;6:10.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Mugnaini E, Floris A. The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol. 1994;339(2):174–80.CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Voogd J, Ruigrok TJ. The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol. 2004;33(1):5–21.CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Lin JC, Cepko CL. Granule cell raphes and parasagittal domains of Purkinje cells: complementary patterns in the developing chick cerebellum. J Neurosci. 1998;18(22):9342–53.CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Karam SD, Burrows RC, Logan C, Koblar S, Pasquale EB, Bothwell M. Eph receptors and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration. J Neurosci. 2000;20(17):6488–500.CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Sillitoe RV, Chung SH, Fritschy JM, Hoy M, Hawkes R. Golgi cell dendrites are restricted by Purkinje cell stripe boundaries in the adult mouse cerebellar cortex. J Neurosci. 2008;28(11):2820–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Chung SH, Sillitoe RV, Croci L, Badaloni A, Consalez G, Hawkes R. Purkinje cell phenotype restricts the distribution of unipolar brush cells. Neuroscience. 2009;164(4):1496–508.CrossRefGoogle Scholar
- 26.Consalez GG, Hawkes R. The compartmental restriction of cerebellar interneurons. Front Neural Circuits. 2012;6:123.PubMedPubMedCentralGoogle Scholar
- 27.Scott TG. A unique pattern of localization within the cerebellum. Nature. 1963;200:793.CrossRefGoogle Scholar
- 28.Liao D. Emerging roles of the EBF family of transcription factors in tumor suppression. Mol Cancer Res. 2009;7(12):1893–901.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Herman RK. Mosaic analysis of two genes that affect nervous system structure in Caenorhabditis elegans. Genetics. 1987;116(3):377–88.PubMedPubMedCentralGoogle Scholar
- 30.Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A. collier, a novel regulator of Drosophila head development is expressed in a single mitotic domain. Curr Biol. 1996;6:707–18.CrossRefGoogle Scholar
- 31.Dubois L, Bally-Cuif L, Crozatier M, Moreau J, Paquereau L, Vincent L. XCoe2, a transcription factor of the Col/Olf-1/EBF family involved in the specification of primary neurons in Xenopus. Curr Biol. 1998;8:199–209.CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Pozzoli O, Bosetti A, Croci L, Consalez GG, Vetter ML. Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus. Dev Biol. 2001;233(2):495–512.CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Hagman J, Belanger C, Travis A, Turck C, Grosschedl R. Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev. 1993;7:760–73.CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Garcia-Dominguez M, Poquet C, Garel S, Charnay P. Ebf gene function is required for coupling neuronal differentiation and cell cycle exit. Development. 2003;130(24):6013–25.CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Kratsios P, Kerk SY, Catela C, Liang J, Vidal B, Bayer EA, et al. An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons. eLife. 2017;6.Google Scholar
- 36.Catela C, Correa E, Wen K, Aburas J, Croci L, Consalez G, et al. An ancient role for collier/Olf/Ebf (COE)-type transcription factors in axial motor neuron development. Neural Dev. 2019;14(2):2.CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Garel S, Marin F, Grosscheld R, Charnay P. Ebf1 controls early cell differentiation in the embryonic striatum. Development. 1999;126(23):5285–94.PubMedPubMedCentralGoogle Scholar
- 38.Green YS, Vetter ML. EBF factors drive expression of multiple classes of target genes governing neuronal development. Neural Dev. 2011;6:19.CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Chiara F, Badaloni A, Croci L, Yeh ML, Cariboni A, Hoerder-Suabedissen A, et al. Early B-cell factors 2 and 3 (EBF2/3) regulate early migration of Cajal-Retzius cells from the cortical hem. Dev Biol. 2012;365(1):277–89.CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Corradi A, Croci L, Broccoli V, Zecchini S, Previtali S, Wurst W, et al. Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice. Development. 2003;130(2):401–10.CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Prasad BC, Ye B, Zackhary R, Schrader K, Seydoux G, Reed RR. Unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. Development. 1998;125(8):1561–8.PubMedPubMedCentralGoogle Scholar
- 42.Malgaretti N, Pozzoli O, Bosetti A, Corradi A, Ciarmatori S, Panigada M, et al. Mmot1, a new helix-loop-helix transcription factor gene displaying a sharp expression boundary in the embryonic mouse brain. J Biol Chem. 1997;272(28):17632–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 43.Garel S, Marin F, Mattei MG, Vesque C, Vincent A, Charnay P. Family of Ebf/Olf-1-related genes potentially involved in neuronal differentiation and regional specification in the central nervous system. Dev Dyn. 1997;210(3):191–205.CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Wang SS, Tsai RYL, Reed RR. The characterization of the Olf-1/EBF-like HLH transcription factor family: implications in olfactory gene regulation and neuronal development. J Neurosci. 1997;17:4149–58.CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Moruzzo D, Nobbio L, Sterlini B, Consalez GG, Benfenati F, Schenone A, et al. The transcription factors EBF1 and EBF2 are positive regulators of myelination in Schwann cells. Mol Neurobiol. 2016;54(10):8117–27.CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Giacomini C, La Padula V, Schenone A, Leandri M, Contestabile A, Moruzzo D, et al. Both Schwann cell and axonal defects cause motor peripheral neuropathy in Ebf2−/− mice. Neurobiol Dis. 2011;42(1):73–84.CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Croci L, Barili V, Chia D, Massimino L, van Vugt R, Masserdotti G, et al. Local insulin-like growth factor I expression is essential for Purkinje neuron survival at birth. Cell Death Differ. 2011;18(1):48–59.CrossRefPubMedPubMedCentralGoogle Scholar
- 48.Hoxha E, Tonini R, Montarolo F, Croci L, Consalez GG, Tempia F. Motor dysfunction and cerebellar Purkinje cell firing impairment in Ebf2 null mice. Mol Cell Neurosci. 2013;52:51–61.CrossRefPubMedPubMedCentralGoogle Scholar
- 49.Bizzoca A, Picocci S, Corsi P, Arbia S, Croci L, Consalez GG, et al. The gene encoding the mouse contactin-1 axonal glycoprotein is regulated by the collier/Olf1/EBF family early B-cell factor 2 transcription factor. Dev Neurobiol. 2015;75(12):1420–40.CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Chung SH, Marzban H, Hawkes R. Compartmentation of the cerebellar nuclei of the mouse. Neuroscience. 2009;161(1):123–38.CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Copeland NG, Jenkins NA, Court DL. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet. 2001;2(10):769–79.CrossRefGoogle Scholar
- 52.Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 2005;33(4):e36.CrossRefPubMedPubMedCentralGoogle Scholar
- 53.Shimshek DR, Kim J, Hubner MR, Spergel DJ, Buchholz F, Casanova E, et al. Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis. 2002;32(1):19–26.CrossRefGoogle Scholar
- 54.Qian H, Badaloni A, Chiara F, Stjernberg J, Polisetti N, Nihlberg K, et al. Molecular characterization of prospectively isolated multipotent mesenchymal progenitors provides new insight into the cellular identity of mesenchymal stem cells in mouse bone marrow. Mol Cell Biol. 2013;33(4):661–77.CrossRefPubMedPubMedCentralGoogle Scholar
- 55.Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21:70–1.CrossRefPubMedPubMedCentralGoogle Scholar
- 56.Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol. 2001;1:4.CrossRefPubMedPubMedCentralGoogle Scholar
- 57.Buffo A, Rossi F. Origin, lineage and function of cerebellar glia. Prog Neurobiol. 2013;109:42–63.CrossRefPubMedPubMedCentralGoogle Scholar
- 58.Kratsios P, Stolfi A, Levine M, Hobert O. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat Neurosci. 2011;15(2):205–14.CrossRefPubMedPubMedCentralGoogle Scholar
- 59.Baumgardt M, Karlsson D, Terriente J, Diaz-Benjumea FJ, Thor S. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell. 2009;139(5):969–82.CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Masserdotti G, Badaloni A, Green YS, Croci L, Barili V, Bergamini G, et al. ZFP423 coordinates Notch and bone morphogenetic protein signaling, selectively up-regulating Hes5 gene expression. J Biol Chem. 2010;285(40):30814–24.CrossRefPubMedPubMedCentralGoogle Scholar
- 61.Tsai RYL, Reed RR. Identification of DNA recognition sequences and protein interaction domains of the multiple zinc finger protein Roaz. Mol Cell Biol. 1998;18:6447–56.CrossRefPubMedPubMedCentralGoogle Scholar
- 62.Tsai RY, Reed RR. Cloning and functional characterization of Roaz, a zinc finger protein that interacts with O/E-1 to regulate gene expression: implications for olfactory neuronal development. J Neurosci. 1997;17(11):4159–69.CrossRefPubMedPubMedCentralGoogle Scholar
- 63.Casoni F, Croci L, Cremona O, Hawkes R, Consalez G. Early Purkinje cell development and the origin of cerebellar patterning. In: Marzban H, editor. Development of the cerebellum, from molecular aspects to diseases. Cham: Springer Nature; 2017. p. 67–86.CrossRefGoogle Scholar
- 64.Frantz GD, Weimann JM, Levin ME, McConnell SK. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci. 1994;14(10):5725–40.CrossRefPubMedPubMedCentralGoogle Scholar
- 65.Hawkes R, Beierbach E, Tan SS. Granule cell dispersion is restricted across transverse boundaries in mouse chimeras. Eur J Neurosci. 1999;11(11):3800–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 66.Miyata T, Maeda T, Lee JE. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev. 1999;13(13):1647–52.CrossRefPubMedPubMedCentralGoogle Scholar
- 67.Chizhikov VV, Davenport J, Zhang Q, Shih EK, Cabello OA, Fuchs JL, et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci. 2007;27(36):9780–9.CrossRefPubMedPubMedCentralGoogle Scholar