The Cerebellum

, Volume 18, Issue 6, pp 1017–1035 | Cite as

The Role of Astrocytes in the Development of the Cerebellum

  • Ana Paula Bergamo Araujo
  • Raul Carpi-Santos
  • Flávia Carvalho Alcantara GomesEmail author


Astrocytes, initially described as merely support cells, are now known as a heterogeneous population of cells actively involved in a variety of biological functions such as: neuronal migration and differentiation; regulation of cerebral blood flow; metabolic control of extracellular potassium concentration; and modulation of synapse formation and elimination; among others. Cerebellar glial cells have been shown to play a significant role in proliferation, differentiation, migration, and synaptogenesis. However, less evidence is available about the role of neuron-astrocyte interactions during cerebellar development and their impact on diseases of the cerebellum. In this review, we will focus on the mechanisms underlying cellular interactions, specifically neuron-astrocyte interactions, during cerebellar development, function, and disease. We will discuss how cerebellar glia, astrocytes, and Bergmann glia play a fundamental role in several steps of cerebellar development, such as granule cell migration, axonal growth, neuronal differentiation, and synapse formation, and in diseases associated with the cerebellum. We will focus on how astrocytes and thyroid hormones impact cerebellar development. Furthermore, we will provide evidence of how growth factors secreted by glial cells, such as epidermal growth factor and transforming growth factors, control cerebellar organogenesis. Finally, we will argue that glia are a key mediator of cerebellar development and that identification of molecules and pathways involved in neuron-glia interactions may contribute to a better understanding of cerebellar development and associated disorders.


Cerebellar development Thyroid hormones Epidermal growth factor Transforming growth factor beta 1 Migration Synapse 



We would like to thank Dra. Marimélia Porcionatto for gently providing us some of the images used in Figs. 1a, b and 2 (histological images). This manuscript was edited by American Journal Experts (AJE).


This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Departamento de Ciência e Tecnologia do Ministério da Saúde (Decit), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2:484–91.PubMedGoogle Scholar
  2. 2.
    Petrosini L, Cutuli D, Picerni E, Laricchiuta D. Cerebellum and personality traits. Cerebellum. 2015;14:43–6.PubMedGoogle Scholar
  3. 3.
    Strata P. The emotional cerebellum. Cerebellum. 2015;14:570–7.PubMedGoogle Scholar
  4. 4.
    Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Schutter DJLG, Van Honk J. The cerebellum on the rise in human emotion. Cerebellum. 2005;4:290–4.PubMedGoogle Scholar
  6. 6.
    Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, et al. Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol. 2002;22:171–5.PubMedGoogle Scholar
  7. 7.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.PubMedGoogle Scholar
  8. 8.
    Grausam KB, Dooyema SDR, Bihannic L, Premathilake H, Morrissy AS, Forget A, et al. ATOH1 promotes leptomeningeal dissemination and metastasis of Sonic hedgehog subgroup medulloblastomas. Cancer Res. 2017;77:3766–77.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Chizhikov V, Millen KJ. Development and malformations of the cerebellum in mice. Mol Genet Metab. 2003;80:54–65.PubMedGoogle Scholar
  10. 10.
    Oberheim NA, Goldman SA, Nedergaard M. Astrocytes. 2012;814:23–45.Google Scholar
  11. 11.
    Diniz LP, Matias ICP, Garcia MN, Gomes FCA. Astrocytic control of neural circuit formation: highlights on TGF-beta signaling. Neurochem Int. 2014;78:18–27.PubMedGoogle Scholar
  12. 12.
    Clarke LE, Barres BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci. 2013;14:311–21.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Diniz LP, Tortelli V, Matias I, Morgado J, Bérgamo Araujo AP, Melo HM, et al. Astrocyte transforming growth factor beta 1 protects synapses against Aβ oligomers in Alzheimer’s disease model. J Neurosci. 2017;37:6797–809.PubMedGoogle Scholar
  14. 14.
    Rakela B, Brehm P, Mandel G. Astrocytic modulation of excitatory synaptic signaling in a mouse model of Rett syndrome. Elife. 2018;7.pii: e31629.Google Scholar
  15. 15.
    Elgayar SAM, Abdel-Hafez AAM, Gomaa AMS, Elsherif R. Vulnerability of glia and vessels of rat substantia nigra in rotenone Parkinson model. Ultrastruct Pathol. 2018;42:181–92.PubMedGoogle Scholar
  16. 16.
    Wang H, Song G, Chuang H, Chiu C, Abdelmaksoud A, Ye Y, et al. Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol. 2018;31:2058738418801406.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol. 2004;72:295–339.PubMedGoogle Scholar
  18. 18.
    Fichtl A, Büttner A, Hof PR, Schmitz C, Kiessling MC. Delineation of subregions in the early postnatal human cerebellum for design-based Stereologic studies. Front Neuroanat. 2017;11:134.PubMedGoogle Scholar
  19. 19.
    Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Cogn Sci. 1998;2:307–13.PubMedGoogle Scholar
  20. 20.
    Larsell O. The morphogenesis and adult pattern of the lobules and fissures of the cerebellum of the white rat. J Comp Neurol. 1952;97:281–356.PubMedGoogle Scholar
  21. 21.
    Corrales JD, Blaess S, Mahoney EM, Joyner AL. The level of Sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development. 2006;133:1811–21.PubMedGoogle Scholar
  22. 22.
    ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HOM, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003;250:1025–36.PubMedGoogle Scholar
  23. 23.
    Lainé J, Axelrad H. The candelabrum cell: a new interneuron in the cerebellar cortex. J Comp Neurol. 1994;339:159–73.PubMedGoogle Scholar
  24. 24.
    Diño MR, Sekerková G, Martina M. Commentary on “E. Mugnaini and A. Floris, the unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol, 339:174–180, 1994”. Cerebellum. 2015;14:484–6.PubMedGoogle Scholar
  25. 25.
    Fañanas JRY. Contribucion al estudo de la neuroglia del cerebelo. Trab Lab Invest biol. 1916;14:163–79.Google Scholar
  26. 26.
    Palay SL, Chan-Palay V. Cerebellar cortex: cytology and organization. Berlin: Springer-Verlag; 1974.Google Scholar
  27. 27.
    Das Kleinhirn JA. In: von Möllendorf W, editor. Handbuch der Mikroskopischen Anatomie des Menschen. Berlin: Springer; 1928.Google Scholar
  28. 28.
    Reichenbach A, Wolburg H. Astrocytes and ependymal glia. In: Neuroglia. New York: Oxford University Press; 2005. p. 35–49.Google Scholar
  29. 29.
    Goertzen A, Veh RW. Fañanas cells—the forgotten cerebellar glia cell type: immunocytochemistry reveals two potassium channel-related polypeptides, Kv2.2 and Calsenilin (KChIP3) as potential marker proteins. Glia. 2018;66:2200–8.PubMedGoogle Scholar
  30. 30.
    Sotelo C. Molecular layer interneurons of the cerebellum: developmental and morphological aspects. Cerebellum. 2015;14:534–56.PubMedGoogle Scholar
  31. 31.
    Hibi M, Shimizu T. Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol. 2012;72:282–301.PubMedGoogle Scholar
  32. 32.
    White JJ, Sillitoe RV. Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdiscip Rev Dev Biol. 2013;2:149–64.PubMedGoogle Scholar
  33. 33.
    Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.PubMedGoogle Scholar
  34. 34.
    Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol. 2007;23:549–77.PubMedGoogle Scholar
  35. 35.
    Lin Y, Chen L, Lin C, Luo Y, Tsai RYL, Wang F. Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum. Dev Biol. 2009;329:44–54.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Meier F, Giesert F, Delic S, Faus-Kessler T, Matheus F, Simeone A, et al. FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum. Dunaevsky A, editor. PLoS One 2014;9:e101124.Google Scholar
  37. 37.
    Wen J, Yang H-B, Zhou B, Lou H-F, Duan S. β-Catenin is critical for cerebellar foliation and lamination. Sugihara I. PLoS One 2013;8:e64451.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, et al. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci. 2005;8:873–80.PubMedGoogle Scholar
  39. 39.
    Hiraoka Y, Komine O, Nagaoka M, Bai N, Hozumi K, Tanaka K. Delta-like 1 regulates Bergmann glial monolayer formation during cerebellar development. Mol Brain. 2013;6:25.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Komine O, Nagaoka M, Watase K, Gutmann DH, Tanigaki K, Honjo T, et al. The monolayer formation of Bergmann glial cells is regulated by Notch/RBP-J signaling. Dev Biol. 2007;311:238–50.PubMedGoogle Scholar
  41. 41.
    Kuang Y, Liu Q, Shu X, Zhang C, Huang N, Li J, et al. Dicer1 and MiR-9 are required for proper Notch1 signaling and the Bergmann glial phenotype in the developing mouse cerebellum. Glia. 2012;60:1734–46.PubMedGoogle Scholar
  42. 42.
    Weller M, Krautler N, Mantei N, Suter U, Taylor V. Jagged1 ablation results in cerebellar granule cell migration defects and depletion of Bergmann glia. Dev Neurosci. 2006;28:70–80.PubMedGoogle Scholar
  43. 43.
    Dahmane N, Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126:3089–100.PubMedGoogle Scholar
  44. 44.
    Wallace VA. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol. 1999;9:445–8.PubMedGoogle Scholar
  45. 45.
    Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic hedgehog. Neuron. 1999;22:103–14.PubMedGoogle Scholar
  46. 46.
    Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP. Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol. 2004;270:393–410.PubMedGoogle Scholar
  47. 47.
    Koibuchi N, Chin WW. Thyroid hormone action and brain development. Trends Endocrinol Metab. 2000;11:123–8.PubMedGoogle Scholar
  48. 48.
    Koibuchi N, Jingu H, Iwasaki T, Chin WW. Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum. 2003;2:279–89.PubMedGoogle Scholar
  49. 49.
    Sinha RA, Pathak A, Kumar A, Tiwari M, Shrivastava A, Godbole MM. Enhanced neuronal loss under perinatal hypothyroidism involves impaired neurotrophic signaling and increased proteolysis of p75NTR. Mol Cell Neurosci. 2009;40:354–64.PubMedGoogle Scholar
  50. 50.
    Alvarez-Dolado M, Figueroa A, Kozlov S, Sonderegger P, Furley AJ, Muñoz A. Thyroid hormone regulates TAG-1 expression in the developing rat brain. Eur J Neurosci. 2001;14:1209–18.PubMedGoogle Scholar
  51. 51.
    Koibuchi N, Qiu C-H, Miyazaki W, Iwasaki T, Shimokawa N. The role of thyroid hormone in developing cerebellum. Cerebellum. 2008;7:499–500.PubMedGoogle Scholar
  52. 52.
    Lauder JM, Altman J, Krebs H. Some mechanisms of cerebellar foliation: effects of early hypo- and hyperthyroidism. Brain Res. 1974;76:33–40.PubMedGoogle Scholar
  53. 53.
    Nicholson JL, Altman J. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res. 1972;44:13–23.PubMedGoogle Scholar
  54. 54.
    Lauder JM. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. III. Kinetics of cell proliferation in the external granular layer. Brain Res. 1977;126:31–51.PubMedGoogle Scholar
  55. 55.
    Lauder JM. Effects of early hypo- and hyperthyroidism on development of rat cerebellar cortex. IV. The parallel fibers. Brain Res. 1978;142:25–39.PubMedGoogle Scholar
  56. 56.
    Morte B, Manzano J, Scanlan T, Vennström B, Bernal J. Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci U S A. 2002;99:3985–9.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Heuer H, Mason CA. Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor alpha1. J Neurosci. 2003;23:10604–12.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Bradley DJ, Towle HC, Young WS. Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci. 1992;12:2288–302.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Koibuchi N, Yamaoka S, Chin WW. Effect of altered thyroid status on neurotrophin gene expression during postnatal development of the mouse cerebellum. Thyroid. 2001;11:205–10.PubMedGoogle Scholar
  60. 60.
    Strait KA, Zou L, Oppenheimer JH. Beta 1 isoform-specific regulation of a triiodothyronine-induced gene during cerebellar development. Mol Endocrinol. 1992;6:1874–80.PubMedGoogle Scholar
  61. 61.
    Diniz LP, Matias I, Siqueira M, Stipursky J, Gomes FCA. Astrocytes and the TGF-β1 pathway in the healthy and diseased brain: a double-edged sword.Mol Neurobiol. 2018;8:1–27.Google Scholar
  62. 62.
    Nakajima T, Hata R, Kunieda Y, Kondo T. Distribution of Smad mRNA and proteins in the rat brain. J Chem Neuroanat. 2018;90:11–39.PubMedGoogle Scholar
  63. 63.
    Zhou Y-X, Zhao M, Li D, Shimazu K, Sakata K, Deng C-X, et al. Cerebellar deficits and hyperactivity in mice lacking Smad4. J Biol Chem. 2003;278:42313–20.PubMedGoogle Scholar
  64. 64.
    Wang L, Nomura M, Goto Y, Tanaka K, Sakamoto R, Abe I, et al. Smad2 protein disruption in the central nervous system leads to aberrant cerebellar development and early postnatal ataxia in mice. J Biol Chem. 2011;286:18766–74.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kimelberg HK. Functions of mature mammalian astrocytes: a current view. Neuroscientist. 2010;16:79–106.PubMedGoogle Scholar
  67. 67.
    Eroglu C, Barres BA. Regulation of synaptic connectivity by glia. Nature. 2010;468:223–31.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Covelo A, Araque A. Neuronal activity determines distinct gliotransmitter release from a single astrocyte. Elife. 2018;7:e32237.Google Scholar
  69. 69.
    Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigão P, Stipursky J, et al. Astrocyte-induced synaptogenesis is mediated by transforming growth factor β signaling through modulation of D-serine levels in cerebral cortex neurons. J Biol Chem. 2012;287:41432–45.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78.PubMedGoogle Scholar
  71. 71.
    Miale IL, Sidman RL. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol. 1961;4:277–96.PubMedGoogle Scholar
  72. 72.
    Sekerková G, Ilijic E, Mugnaini E. Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling. Neuroscience. 2004;127:845–58.PubMedGoogle Scholar
  73. 73.
    Miller FD, Gauthier AS. Timing is everything: making neurons versus glia in the developing cortex. Neuron. 2007;54:357–69.PubMedGoogle Scholar
  74. 74.
    Silbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, et al. Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Mol Cell Neurosci. 2010;44:362–73.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Okano-Uchida T, Himi T, Komiya Y, Ishizaki Y. Cerebellar granule cell precursors can differentiate into astroglial cells. Proc Natl Acad Sci U S A. 2004;101:1211–6.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Altman J, Bayer SA. Development of the precerebellar nuclei in the rat: I. the precerebellar neuroepithelium of the rhombencephalon. J Comp Neurol. 1987;257:477–89.PubMedGoogle Scholar
  77. 77.
    Machold RP, Kittell DJ, Fishell GJ. Antagonism between Notch and bone morphogenetic protein receptor signaling regulates neurogenesis in the cerebellar rhombic lip. Neural Dev. 2007;2:5.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Lütolf S, Radtke F, Aguet M, Suter U, Taylor V. Notch1 is required for neuronal and glial differentiation in the cerebellum. Development. 2002;129:373–85.PubMedGoogle Scholar
  79. 79.
    Yuasa S. Bergmann glial development in the mouse cerebellum as revealed by tenascin expression. Anat Embryol (Berl). 1996;194:223–34.PubMedGoogle Scholar
  80. 80.
    Yamada K, Watanabe M. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int. 2002;77:94–108.PubMedGoogle Scholar
  81. 81.
    Rakic P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol. 1971;141:283–312.PubMedGoogle Scholar
  82. 82.
    Delaney CL, Brenner M, Messing A. Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J Neurosci. 1996;16:6908–18.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Ma S, Kwon HJ, Huang Z. Ric-8a, a guanine nucleotide exchange factor for heterotrimeric G proteins, regulates bergmann glia-basement membrane adhesion during cerebellar foliation. J Neurosci. 2012;32:14979–93.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Palay SL, Chan-Palay V. A guide to the synaptic analysis of the neuropil. Cold Spring Harb Symp Quant Biol. 1976;40:1–16.PubMedGoogle Scholar
  85. 85.
    Farmer WT, Murai K. Resolving astrocyte heterogeneity in the CNS. Front Cell Neurosci. 2017;11:300.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Ben Haim L, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci. 2017;18:31–41.PubMedGoogle Scholar
  87. 87.
    Jakab RL, Hámori J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat Embryol (Berl). 1988;179:81–8.PubMedGoogle Scholar
  88. 88.
    Yamada H, Fredette B, Shitara K, Hagihara K, Miura R, Ranscht B, et al. The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons. J Neurosci. 1997;17:7784–95.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Hoogland TM, Kuhn B. Recent developments in the understanding of astrocyte function in the cerebellum in vivo. Cerebellum. 2010;9:264–71.PubMedGoogle Scholar
  90. 90.
    Schachner M, Hedley-Whyte ET, Hsu DW, Schoonmaker G, Bignami A. Ultrastructural localization of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labeling. J Cell Biol. 1977;75:67–73.PubMedGoogle Scholar
  91. 91.
    Landis DM, Reese TS. Regional organization of astrocytic membranes in cerebellar cortex. Neuroscience. 1982;7:937–50.PubMedGoogle Scholar
  92. 92.
    Kiyoshi CM, Du Y, Zhong S, Wang W, Taylor AT, Xiong B, et al. Syncytial isopotentiality: a system-wide electrical feature of astrocytic networks in the brain. Glia. 2018;66:2756–69.PubMedGoogle Scholar
  93. 93.
    Hoogland TM, Kuhn B, Göbel W, Huang W, Nakai J, Helmchen F, et al. Radially expanding transglial calcium waves in the intact cerebellum. Proc Natl Acad Sci U S A. 2009;106:3496–501.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Gomes FC, Maia CG, de Menezes JR, Neto VM. Cerebellar astrocytes treated by thyroid hormone modulate neuronal proliferation. Glia. 1999;25:247–55.PubMedGoogle Scholar
  95. 95.
    Martinez R, Gomes FCA. Neuritogenesis induced by thyroid hormone-treated astrocytes is mediated by epidermal growth factor/mitogen-activated protein kinase-phosphatidylinositol 3-kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem. 2002;277:49311–8.PubMedGoogle Scholar
  96. 96.
    Martinez R, Gomes FCA. Proliferation of cerebellar neurons induced by astrocytes treated with thyroid hormone is mediated by a cooperation between cell contact and soluble factors and involves the epidermal growth factor-protein kinase a pathway. J Neurosci Res. 2005;80:341–9.PubMedGoogle Scholar
  97. 97.
    Martinez R, Eller C, Viana NB, Gomes FCA. Thyroid hormone induces cerebellar neuronal migration and Bergmann glia differentiation through epidermal growth factor/mitogen-activated protein kinase pathway. Eur J Neurosci. 2011;33:26–35.PubMedGoogle Scholar
  98. 98.
    Araujo APB, Martinez R, Gomes FCA, Eller CM, Diniz LP, de Matos BG. Effects of transforming growth factor beta 1 in cerebellar development: role in synapse formation. Front Cell Neurosci. 2016;10:1–13.Google Scholar
  99. 99.
    Kamei Y, Inagaki N, Nishizawa M, Tsutsumi O, Taketani Y, Inagaki M. Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin. Glia. 1998;23:191–9.PubMedGoogle Scholar
  100. 100.
    Sotelo C. Cerebellar neuroglia: morphological and histochemical aspects. Prog Brain Res. 1967;25:226–50.PubMedGoogle Scholar
  101. 101.
    Merkle FT, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A. 2004;101:17528–32.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Malatesta P, Appolloni I, Calzolari F. Radial glia and neural stem cells. Cell Tissue Res. 2008;331:165–78.PubMedGoogle Scholar
  103. 103.
    Bellamy TC. Interactions between Purkinje neurones and Bergmann glia. Cerebellum. 2006;5:116–26.PubMedGoogle Scholar
  104. 104.
    Sotelo C, Alvarado-Mallart RM, Gardette R, Crepel F. Fate of grafted embryonic Purkinje cells in the cerebellum of the adult “Purkinje cell degeneration”; mutant mouse. I. Development of reciprocal graft-host interactions. J Comp Neurol. 1990;295:165–87.PubMedGoogle Scholar
  105. 105.
    Sotelo C, Alvarado-Mallart RM, Frain M, Vernet M. Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci. 1994;14:124–33.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Buffo A, Rossi F. Origin, lineage and function of cerebellar glia. Prog Neurobiol. 2013;109:42–63.PubMedGoogle Scholar
  107. 107.
    Wang F, Xu Q, Wang W, Takano T, Nedergaard M. Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake. Proc Natl Acad Sci. 2012;109:7911–6.PubMedGoogle Scholar
  108. 108.
    Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science. 2001;292:926–9.PubMedGoogle Scholar
  109. 109.
    Saab AS, Neumeyer A, Jahn HM, Cupido A, Šimek AAM, Boele H-J, et al. Bergmann glial AMPA receptors are required for fine motor coordination. Science. 2012;337:749–53.PubMedGoogle Scholar
  110. 110.
    Balakrishnan S, Bellamy TC. Depression of parallel and climbing fiber transmission to Bergmann glia is input specific and correlates with increased precision of synaptic transmission. Glia. 2009;57:393–401.PubMedGoogle Scholar
  111. 111.
    Balakrishnan S, Dobson KL, Jackson C, Bellamy TC. Ectopic release of glutamate contributes to spillover at parallel fibre synapses in the cerebellum. J Physiol. 2014;592:1493–503.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Poblete-Naredo I, Guillem AM, Juárez C, Zepeda RC, Ramírez L, Caba M, et al. Brain-derived neurotrophic factor and its receptors in Bergmann glia cells. Neurochem Int. 2011;59:1133–44.PubMedGoogle Scholar
  113. 113.
    Jakoby P, Schmidt E, Ruminot I, Gutiérrez R, Barros LF, Deitmer JW. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices. Cereb Cortex. 2014;24:222–31.PubMedGoogle Scholar
  114. 114.
    Shiga T, Ichikawa M, Hirata Y. A Golgi study of Bergmann glial cells in developing rat cerebellum. Anat Embryol (Berl). 1983;167:191–201.Google Scholar
  115. 115.
    Rakic P, Sidman RL. Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci U S A. 1973;70:240–4.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Rakic P, Sidman RL. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol. 1973;152:103–32.PubMedGoogle Scholar
  117. 117.
    Li K, Leung AW, Guo Q, Yang W, Li JYH. Shp2-dependent ERK signaling is essential for induction of Bergmann glia and foliation of the cerebellum. J Neurosci. 2014;34:922–31.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Driver AM, Shumrick C, Stottmann RW. Ttc21b is required in Bergmann glia for proper granule cell radial migration. J Dev Biol. 2017;5:18.PubMedCentralGoogle Scholar
  119. 119.
    Portella AC, Carvalho F, Faustino L, Wondisford FE, Ortiga-Carvalho TM, Gomes FCA. Thyroid hormone receptor beta mutation causes severe impairment of cerebellar development. Mol Cell Neurosci. 2010;44:68–77.PubMedGoogle Scholar
  120. 120.
    Fauquier T, Chatonnet F, Picou F, Richard S, Fossat N, Aguilera N, et al. Purkinje cells and Bergmann glia are primary targets of the TRα1 thyroid hormone receptor during mouse cerebellum postnatal development. Development. 2014;141:166–75.PubMedGoogle Scholar
  121. 121.
    Miyazaki T, Yamasaki M, Hashimoto K, Kohda K, Yuzaki M, Shimamoto K, et al. Glutamate transporter GLAST controls synaptic wrapping by Bergmann glia and ensures proper wiring of Purkinje cells. Proc Natl Acad Sci. 2017;114:7438–43.PubMedGoogle Scholar
  122. 122.
    Lippman JJ, Lordkipanidze T, Buell ME, Yoon SO, Dunaevsky A. Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia. 2008;56:1463–77.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Kikuchihara S, Sugio S, Tanaka KF, Watanabe T, Kano M, Yamazaki Y, et al. Ectopic positioning of Bergmann glia and impaired cerebellar wiring in Mlc1-over-expressing mice. J Neurochem. 2018;147:344–60.PubMedGoogle Scholar
  124. 124.
    Ango F, Wu C, Van der Want JJ, Wu P, Schachner M, Huang ZJ. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites. Ghosh A, editor. PLoS Biol. 2008;6:e103.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Alcock J, Scotting P, Sottile V. Bergmann glia as putative stem cells of the mature cerebellum. Med Hypotheses. 2007;69:341–5.PubMedGoogle Scholar
  126. 126.
    Sottile V, Li M, Scotting PJ. Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res. 2006;1099:8–17.PubMedGoogle Scholar
  127. 127.
    Ponti G, Peretto P, Bonfanti L. Genesis of neuronal and glial progenitors in the cerebellar cortex of peripuberal and adult rabbits. Reh TA, editor. PLoS One. 2008;3:e2366.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Diers-Fenger M, Kirchhoff F, Kettenmann H, Levine JM, Trotter J. AN2/NG2 protein-expressing glial progenitor cells in the murine CNS: isolation, differentiation, and association with radial glia. Glia. 2001;34:213–28.PubMedGoogle Scholar
  129. 129.
    Levine JM, Stincone F, Lee YS. Development and differentiation of glial precursor cells in the rat cerebellum. Glia. 1993;7:307–21.PubMedGoogle Scholar
  130. 130.
    Grimaldi P, Rossi F. Lack of neurogenesis in the adult rat cerebellum after Purkinje cell degeneration and growth factor infusion. Eur J Neurosci. 2006;23:2657–68.PubMedGoogle Scholar
  131. 131.
    Cerrato V, Mercurio S, Leto K, Fucà E, Hoxha E, Bottes S, et al. Sox2 conditional mutation in mouse causes ataxic symptoms, cerebellar vermis hypoplasia, and postnatal defects of Bergmann glia. Glia. 2018;66:1929–46.PubMedGoogle Scholar
  132. 132.
    Parmigiani E, Leto K, Rolando C, Figueres-Oñate M, López-Mascaraque L, Buffo A, et al. Heterogeneity and bipotency of astroglial-like cerebellar progenitors along the interneuron and glial lineages. J Neurosci. 2015;35:7388–402.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Wojcinski A, Lawton AK, Bayin NS, Lao Z, Stephen DN, Joyner AL. Cerebellar granule cell replenishment postinjury by adaptive reprogramming of nestin+ progenitors. Nat Neurosci. 2017;20:1361–70.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Ahlfeld J, Filser S, Schmidt F, Wefers AK, Merk DJ, Glaß R, et al. Neurogenesis from Sox2 expressing cells in the adult cerebellar cortex. Sci Rep. 2017;7:6137.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Petersen KU. Zur Feinstruktur der Neurogliazellen in der Kleinhirnrinde von Säugetieren. 1969. Z Zellforsch Mikrosk Anat. 1969;100(4):616–33.Google Scholar
  136. 136.
    Millen KJ, Wurst W, Herrup K, Joyner AL. Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development. 1994;120:695–706.PubMedGoogle Scholar
  137. 137.
    Hatten ME, Heintz N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu Rev Neurosci. 1995;18:385–408.PubMedGoogle Scholar
  138. 138.
    Qiu Z, Cang Y, Goff SP. Abl family tyrosine kinases are essential for basement membrane integrity and cortical lamination in the cerebellum. J Neurosci. 2010;30:14430–9.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Sudarov A, Joyner AL. Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev. 2007;2:26.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME. Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron. 2001;31:557–68.PubMedGoogle Scholar
  141. 141.
    Hatten ME, Roussel MF. Development and cancer of the cerebellum. Trends Neurosci. 2011;34:134–42.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Basson MA, Wingate RJ. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences. Front Neuroanat. 2013;7:29.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Burgoyne RD, Cambray-Deakin MA. The cellular neurobiology of neuronal development: the cerebellar granule cell. Brain Res. 1998;472:77–101.Google Scholar
  144. 144.
    Wood KA, Dipasquale B, Youle RJ. In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron. 1993;11:621–32.PubMedGoogle Scholar
  145. 145.
    Ten Donkelaar HJ, Lammens M. Development of the human cerebellum and its disorders. Clin Perinatol. 2009;36:513–30.PubMedGoogle Scholar
  146. 146.
    Zhuang J-L, Wang C-Y, Zhou M-H, Duan K-Z, Mei Y-A. TGF-β1 enhances Kv2.1 potassium channel protein expression and promotes maturation of cerebellar granule neurons. J Cell Physiol. 2012;227:297–307.PubMedGoogle Scholar
  147. 147.
    Maier V, Jolicoeur C, Rayburn H, Takegahara N, Kumanogoh A, Kikutani H, et al. Semaphorin 4C and 4G are ligands of Plexin-B2 required in cerebellar development. Mol Cell Neurosci. 2011;46:419–31.PubMedGoogle Scholar
  148. 148.
    Miyata T, Nakajima K, Mikoshiba K, Ogawa M. Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J Neurosci. 1997;17:3599–609.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Choo M, Miyazaki T, Yamazaki M, Kawamura M, Nakazawa T, Zhang J, et al. Retrograde BDNF to TrkB signaling promotes synapse elimination in the developing cerebellum. Nat Commun. 2017;8:195.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Hashimoto K, Sakane F, Ikeda N, Akiyama A, Sugahara M, Miyamoto Y. Vitronectin promotes the progress of the initial differentiation stage in cerebellar granule cells. Mol Cell Neurosci. 2016;70:76–85.PubMedGoogle Scholar
  151. 151.
    Belvindrah R, Nalbant P, Ding S, Wu C, Bokoch GM, Müller U. Integrin-linked kinase regulates Bergmann glial differentiation during cerebellar development. Mol Cell Neurosci. 2006;33:109–25.PubMedGoogle Scholar
  152. 152.
    Blaess S, Graus-Porta D, Belvindrah R, Radakovits R, Pons S, Littlewood-Evans A, et al. Beta1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci. 2004;24:3402–12.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Mills J, Niewmierzycka A, Oloumi A, Rico B, St-Arnaud R, Mackenzie IR, et al. Critical role of integrin-linked kinase in granule cell precursor proliferation and cerebellar development. J Neurosci. 2006;26:830–40.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Trentin AG, De Aguiar CBNM, Garcez RC, Alvarez-Silva M. Thyroid hormone modulates the extracellular matrix organization and expression in cerebellar astrocyte: effects on astrocyte adhesion. Glia. 2003;42:359–69.PubMedGoogle Scholar
  155. 155.
    Araujo APB, Ribeiro MEOB, Ricci R, Torquato RJ, Toma L, Porcionatto MA. Glial cells modulate heparan sulfate proteoglycan (HSPG) expression by neuronal precursors during early postnatal cerebellar development. Int J Dev Neurosci. 2010;28:611–20.PubMedGoogle Scholar
  156. 156.
    Calvo R, Obregón MJ, Ruiz de Oña C, Escobar del Rey F, Morreale de Escobar G. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3′-triiodothyronine in the protection of the fetal brain. J Clin Invest. 1990;86:889–99.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Guadaño-Ferraz A, Obregón MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A. 1997;94:10391–6.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993;14:184–93.PubMedGoogle Scholar
  159. 159.
    Koibuchi N. The role of thyroid hormone on functional organization in the cerebellum. Cerebellum. 2013;12:304–6.PubMedGoogle Scholar
  160. 160.
    Stipursky J, Francis D, Dezonne RS, de Araújo APB, Souza L, Moraes CA, et al. Corrigendum: TGF-β1 promotes cerebral cortex radial glia-astrocyte differentiation in vivo. Front Cell Neurosci. 2015;9:232.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Prezioso G, Giannini C, Chiarelli F. Effect of thyroid hormones on neurons and neurodevelopment. Horm Res Paediatr. 2018;90:73–81.PubMedGoogle Scholar
  162. 162.
    Wassner AJ. Congenital hypothyroidism. Clin Perinatol. 2018;45:1–18.PubMedGoogle Scholar
  163. 163.
    Venero C, Guadaño-Ferraz A, Herrero AI, Nordström K, Manzano J, de Escobar GM, et al. Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev. 2005;19:2152–63.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Yu L, Iwasaki T, Xu M, Lesmana R, Xiong Y, Shimokawa N, et al. Aberrant cerebellar development of transgenic mice expressing dominant-negative thyroid hormone receptor in cerebellar Purkinje cells. Endocrinology. 2015;156:1565–76.PubMedGoogle Scholar
  165. 165.
    Wang Y, Wang Y, Dong J, Wei W, Song B, Min H, et al. Developmental hypothyroxinemia and hypothyroidism reduce proliferation of cerebellar granule neuron precursors in rat offspring by downregulation of the Sonic hedgehog signaling pathway. Mol Neurobiol. 2014;49:1143–52.PubMedGoogle Scholar
  166. 166.
    Hatsukano T, Kurisu J, Fukumitsu K, Fujishima K, Kengaku M. Thyroid hormone induces PGC-1α during dendritic outgrowth in mouse cerebellar Purkinje cells. Front Cell Neurosci. 2017;11:133Google Scholar
  167. 167.
    Trentin AG, Alvarez-Silva M, Moura Neto V. Thyroid hormone induces cerebellar astrocytes and C6 glioma cells to secrete mitogenic growth factors. Am J Physiol Endocrinol Metab. 2001;281:E1088–94.PubMedGoogle Scholar
  168. 168.
    Alvarez-Dolado M, Ruiz M, Del Río JA, Alcántara S, Burgaya F, Sheldon M, et al. Thyroid hormone regulates reelin and dab1 expression during brain development. J Neurosci. 1999;19:6979–93.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Trentin AG, Moura Neto V. T3 affects cerebellar astrocyte proliferation, GFAP and fibronectin organization. Neuroreport. 1995;6:293–6.PubMedGoogle Scholar
  170. 170.
    Farwell AP, Dubord-Tomasetti SA. Thyroid hormone regulates the expression of laminin in the developing rat cerebellum. Endocrinology. 1999;140:4221–7.PubMedGoogle Scholar
  171. 171.
    Carpenter G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem. 1987;56:881–914.PubMedGoogle Scholar
  172. 172.
    Carpenter G, Cohen S. Epidermal growth factor. Annu Rev Biochem [Internet]. 1979;48:193–216. Available from: Accesed 31 Mar 2019PubMedGoogle Scholar
  173. 173.
    Yamada M, Ikeuchi T, Hatanaka H. The neurotrophic action and signalling of epidermal growth factor. Prog Neurobiol. 1997;51:19–37.PubMedGoogle Scholar
  174. 174.
    Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 2017;9:52.Google Scholar
  175. 175.
    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–48.PubMedGoogle Scholar
  176. 176.
    Soo RA, Lim SM, Syn NL, Teng R, Soong R, Mok TSK, et al. Immune checkpoint inhibitors in epidermal growth factor receptor mutant non-small cell lung cancer: current controversies and future directions. Lung Cancer. 2018;115:12–20.PubMedGoogle Scholar
  177. 177.
    Hofheinz R-D, Segaert S, Safont MJ, Demonty G, Prenen H. Management of adverse events during treatment of gastrointestinal cancers with epidermal growth factor inhibitors. Crit Rev Oncol Hematol. 2017;114:102–13.PubMedGoogle Scholar
  178. 178.
    Garcez RC, Teixeira BL, Schmitt S dos S, Alvarez-Silva M, Trentin AG. Epidermal growth factor (EGF) promotes the in vitro differentiation of neural crest cells to neurons and melanocytes. Cell Mol Neurobiol. 2009;29:1087–91.PubMedGoogle Scholar
  179. 179.
    Cameron HA, Hazel TG, McKay RD. Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol. 1998;36:287–306.PubMedGoogle Scholar
  180. 180.
    Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027–33.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Zhao H, Zuo X, Ren L, Li Y, Tai H, Du J, et al. Combined use of bFGF/EGF and all-trans-retinoic acid cooperatively promotes neuronal differentiation and neurite outgrowth in neural stem cells. Neurosci Lett. 2019;690:61–8.PubMedGoogle Scholar
  182. 182.
    Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci. 1996;16:2649–58.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.PubMedGoogle Scholar
  184. 184.
    Vescovi AL, Reynolds BA, Fraser DD, Weiss S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron. 1993;11:951–66.PubMedGoogle Scholar
  185. 185.
    Tang Y, Ye M, Du Y, Qiu X, Lv X, Yang W, et al. EGFR signaling upregulates surface expression of the GluN2B-containing NMDA receptor and contributes to long-term potentiation in the hippocampus. Neuroscience. 2015;304:109–21.PubMedGoogle Scholar
  186. 186.
    Leutz A, Schachner M. Epidermal growth factor stimulates DNA-synthesis of astrocytes in primary cerebellar cultures. Cell Tissue Res. 1981;220:393–404.PubMedGoogle Scholar
  187. 187.
    Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 1996;10:3129–40.PubMedGoogle Scholar
  188. 188.
    Honegger P, Guentert-Lauber B. Epidermal growth factor (EGF) stimulation of cultured brain cells. I. Enhancement of the developmental increase in glial enzymatic activity. Brain Res. 1983;313:245–51.PubMedGoogle Scholar
  189. 189.
    Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995;269:230–4.PubMedGoogle Scholar
  190. 190.
    Sibilia M, Steinbach JP, Stingl L, Aguzzi A, Wagner EF. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J. 1998;17:719–31.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Mendes-de-Aguiar CBN, Alchini R, Zucco JK, Costa-Silva B, Decker H, Alvarez-Silva M, et al. Impaired astrocytic extracellular matrix distribution under congenital hypothyroidism affects neuronal development in vitro. J Neurosci Res. 2010;88:3350–60.PubMedGoogle Scholar
  192. 192.
    Shimokawa N, Yousefi B, Morioka S, Yamaguchi S, Ohsawa A, Hayashi H, et al. Altered cerebellum development and dopamine distribution in a rat genetic model with congenital hypothyroidism. J Neuroendocrinol. 2014;26:164–75.PubMedGoogle Scholar
  193. 193.
    Kornblum HI, Hussain RJ, Bronstein JM, Gall CM, Lee DC, Seroogy KB. Prenatal ontogeny of the epidermal growth factor receptor and its ligand, transforming growth factor alpha, in the rat brain. J Comp Neurol. 1997;380:243–61.PubMedGoogle Scholar
  194. 194.
    Carrasco E, Blum M, Weickert CS, Casper D. Epidermal growth factor receptor expression is related to post-mitotic events in cerebellar development: regulation by thyroid hormone. Brain Res Dev Brain Res. 2003;140:1–13.PubMedGoogle Scholar
  195. 195.
    Caric D, Raphael H, Viti J, Feathers A, Wancio D, Lillien L. EGFRs mediate chemotactic migration in the developing telencephalon. Development. 2001;128:4203–16.PubMedGoogle Scholar
  196. 196.
    Aguirre A, Rizvi TA, Ratner N, Gallo V. Overexpression of the epidermal growth factor receptor confers migratory properties to nonmigratory postnatal neural progenitors. J Neurosci. 2005;25:11092–106.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Gonzalez-Perez O, Quiñones-Hinojosa A. Dose-dependent effect of EGF on migration and differentiation of adult subventricular zone astrocytes. Glia. 2010;58:975–83.PubMedPubMedCentralGoogle Scholar
  198. 198.
    John Lin C-C, Yu K, Hatcher A, Huang T-W, Lee HK, Carlson J, et al. Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci. 2017;20:396–405.PubMedGoogle Scholar
  199. 199.
    Zhang B, Chen LY, Liu X, Maxeiner S, Lee S-J, Gokce O, et al. Neuroligins sculpt cerebellar Purkinje-cell circuits by differential control of distinct classes of synapses. Neuron. 2015;87:781–96.PubMedPubMedCentralGoogle Scholar
  200. 200.
    Kakizawa S, Yamasaki M, Watanabe M, Kano M. Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci. 2000;20:4954–61.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Nakayama H, Miyazaki T, Kitamura K, Hashimoto K, Yanagawa Y, Obata K, et al. GABAergic inhibition regulates developmental synapse elimination in the cerebellum. Neuron. 2012;74:384–96.PubMedGoogle Scholar
  202. 202.
    Emi K, Kakegawa W, Miura E, Ito-Ishida A, Kohda K, Yuzaki M. Reevaluation of the role of parallel fiber synapses in delay eyeblink conditioning inmice using Cbln1 as a tool. Front Neural Circuits. 2013;7:180.Google Scholar
  203. 203.
    Mishina M, Uemura T, Yasumura M, Yoshida T. Molecular mechanism of parallel fiber-Purkinje cell synapse formation. Front Neural Circuits. 2012;6:90.Google Scholar
  204. 204.
    Nishida H, Okabe S. Visualization of synapse-glia dynamics. Brain Nerve. 2007;59:755–61.PubMedGoogle Scholar
  205. 205.
    Barker AJ, Koch SM, Reed J, Barres BA, Ullian EM. Developmental control of synaptic receptivity. J Neurosci. 2008;28:8150–60.PubMedPubMedCentralGoogle Scholar
  206. 206.
    Hama H, Hara C, Yamaguchi K, Miyawaki A. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron. 2004;41:405–15.PubMedGoogle Scholar
  207. 207.
    Stogsdill JA, Ramirez J, Liu D, Kim YH, Baldwin KT, Enustun E, et al. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature. 2017;551:192–7.PubMedPubMedCentralGoogle Scholar
  208. 208.
    Matias I, Diniz LP, Buosi A, Neves G, Stipursky J, Gomes FCA. Flavonoid hesperidin induces synapse formation and improves memory performance through the astrocytic TGF-β1. Front Aging Neurosci. 2017;9:184.PubMedPubMedCentralGoogle Scholar
  209. 209.
    Stipursky J, Gomes FCA. TGF-beta1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development. Glia. 2007;55:1023–33.PubMedGoogle Scholar
  210. 210.
    Stipursky J, Spohr TCL de SE, Sousa VO, Gomes FCA. Neuron-astroglial interactions in cell-fate commitment and maturation in the central nervous system. Neurochem Res. 2012;37:2402–18.PubMedGoogle Scholar
  211. 211.
    de Sampaio e Spohr TCL, Martinez R, da Silva EF, Neto VM, FCA G. Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factor-beta1. Eur J Neurosci. 2002;16:2059–69.PubMedGoogle Scholar
  212. 212.
    Romão LF, Sousa Vde O, Neto VM, Gomes FCA. Glutamate activates GFAP gene promoter from cultured astrocytes through TGF-beta1 pathways. J Neurochem. 2008;106:746–56.PubMedGoogle Scholar
  213. 213.
    Siqueira M, Francis D, Gisbert D, Gomes FCA, Stipursky J. Radial glia cells control angiogenesis in the developing cerebral cortex through TGF-β1 signaling. Mol Neurobiol. 2018;55:3660–75.PubMedGoogle Scholar
  214. 214.
    Buosi AS, Matias I, Araujo APB, Batista C, Gomes FCA. Heterogeneity in synaptogenic profile of astrocytes from different brain regions. Mol Neurobiol. 2018;55:751–62.PubMedGoogle Scholar
  215. 215.
    Moraes CA, Santos G, de Sampaio e Spohr TCL, D’Avila JC, Lima FRS, Benjamim CF, et al. Activated microglia-induced deficits in excitatory synapses through IL-1β: implications for cognitive impairment in sepsis. Mol Neurobiol. 2015;52:653–63.Google Scholar
  216. 216.
    Böttner M, Unsicker K, Suter-Crazzolara C. Expression of TGF-beta type II receptor mRNA in the CNS. Neuroreport. 1996;7:2903–7.PubMedGoogle Scholar
  217. 217.
    De Groot CJ, Montagne L, Barten AD, Sminia P, Van Der Valk P. Expression of transforming growth factor (TGF)-beta1, -beta2, and -beta3 isoforms and TGF-beta type I and type II receptors in multiple sclerosis lesions and human adult astrocyte cultures. J Neuropathol Exp Neurol. 1999;58:174–87.PubMedGoogle Scholar
  218. 218.
    Vincze C, Pál G, Wappler EA, Szabó ER, Nagy ZG, Lovas G, et al. Distribution of mRNAs encoding transforming growth factors-beta1, -2, and -3 in the intact rat brain and after experimentally induced focal ischemia. J Comp Neurol. 2010;518:3752–70.PubMedGoogle Scholar
  219. 219.
    Gomes FCA, Sousa Vde O, Romão L. Emerging roles for TGF-beta1 in nervous system development. Int J Dev Neurosci. 2005;23:413–24.PubMedGoogle Scholar
  220. 220.
    Cerrato V, Parmigiani E, Figueres-Oñate M, Betizeau M, Aprato J, Nanavaty I, et al. Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity. Eroglu C, editor. PLoS Biol 2018;16:e2005513.Google Scholar
  221. 221.
    Melone M, Ciriachi C, Pietrobon D, Conti F. Heterogeneity of astrocytic and neuronal GLT-1 at cortical excitatory synapses, as revealed by itscolocalization with Na+/K+-ATPase α isoforms. Cereb Cortex. 2018;9:bhy203Google Scholar
  222. 222.
    Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 2005;120:421–33.PubMedGoogle Scholar
  223. 223.
    Bae JJ, Xiang Y-Y, Martinez-Canabal A, Frankland PW, Yang BB, Lu W-Y. Increased transforming growth factor-β1 modulates glutamate receptor expression in the hippocampus. Int J Physiol Pathophysiol Pharmacol. 2011;3:9–20.PubMedGoogle Scholar
  224. 224.
    Feng Z, Ko C-P. Schwann cells promote synaptogenesis at the neuromuscular junction via transforming growth factor-1. J Neurosci. 2008;28:9599–609.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Jaskova K, Pavlovicova M, Cagalinec M, Lacinova L, Jurkovicova D. TGFβ1 downregulates neurite outgrowth, expression of Ca2+ transporters, and mitochondrial dynamics of in vitro cerebellar granule cells. Neuroreport. 2014;25:340–6.PubMedGoogle Scholar
  226. 226.
    Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V. Neuroglia: functional paralysis and reactivity in Alzheimer’s disease and other neurodegenerative pathologies. Adv Neurobiol. 2017;15:427–49.PubMedGoogle Scholar
  227. 227.
    Blanco-Suárez E, Caldwell ALM, Allen NJ. Role of astrocyte-synapse interactions in CNS disorders. J Physiol. 2017;595:1903–16.PubMedGoogle Scholar
  228. 228.
    Garcia O, Torres M, Helguera P, Coskun P, Busciglio J. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome. Feany MB, editor. PLoS One. 2010;5:e14200.PubMedPubMedCentralGoogle Scholar
  229. 229.
    Hibaoui Y, Grad I, Letourneau A, Sailani MR, Dahoun S, Santoni FA, et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol Med. 2014;6:259–77.PubMedGoogle Scholar
  230. 230.
    Bosson A, Boisseau S, Buisson A, Savasta M, Albrieux M. Disruption of dopaminergic transmission remodels tripartite synapse morphology and astrocytic calcium activity within substantia nigra pars reticulata. Glia. 2015;63:673–83.PubMedGoogle Scholar
  231. 231.
    Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Ozkan E, et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell. 2009;139:380–92.PubMedPubMedCentralGoogle Scholar
  232. 232.
    Crunelli V, Carmignoto G, Steinhäuser C. Novel astrocyte targets. Neurosci. 2015;21:62–83.Google Scholar
  233. 233.
    Shin J-Y, Fang Z-H, Yu Z-X, Wang C-E, Li S-H, Li X-J. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol. 2005;171:1001–12.PubMedPubMedCentralGoogle Scholar
  234. 234.
    Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci. 2014;17:694–703.PubMedPubMedCentralGoogle Scholar
  235. 235.
    Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A. 2013;110:E2518–27.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Cvetanovic M, Ingram M, Orr H, Opal P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience. 2015;289:289–99.PubMedPubMedCentralGoogle Scholar
  237. 237.
    Dooves S, Bugiani M, Wisse LE, Abbink TEM, van der Knaap MS, Heine VM. Bergmann glia translocation: a new disease marker for vanishing white matter identifies therapeutic effects of Guanabenz treatment. Neuropathol Appl Neurobiol. 2018;44:391–403.PubMedGoogle Scholar
  238. 238.
    Franco C, Genis L, Navarro JA, Perez-Domper P, Fernandez AM, Schneuwly S, et al. A role for astrocytes in cerebellar deficits in frataxin deficiency: protection by insulin-like growth factor I. Mol Cell Neurosci. 2017;80:100–10.PubMedGoogle Scholar
  239. 239.
    Kim YS, Woo J, Lee CJ, Yoon B-E. Decreased glial GABA and tonic inhibition in cerebellum of mouse model for attention-deficit/hyperactivity disorder (ADHD). Exp Neurobiol. 2017;26:206.PubMedPubMedCentralGoogle Scholar
  240. 240.
    Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Ma SY, et al. Contribution of olivofloccular circuitry developmental defects to atypical gaze in autism. Brain Res. 2013;1512:106–22.PubMedPubMedCentralGoogle Scholar
  241. 241.
    Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology. 2001;57:1618–28.PubMedGoogle Scholar
  242. 242.
    Edmonson C, Ziats MN, Rennert OM. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism. 2014;5:3.PubMedPubMedCentralGoogle Scholar
  243. 243.
    Porterfield SP, Hendrich CE. The role of thyroid hormones in prenatal and neonatal neurological development—current perspectives. Endocr Rev. 1993;14:94–106.PubMedGoogle Scholar
  244. 244.
    Shiwaku H, Yoshimura N, Tamura T, Sone M, Ogishima S, Watase K, et al. Suppression of the novel ER protein Maxer by mutant ataxin-1 in Bergman glia contributes to non-cell-autonomous toxicity. EMBO J. 2010;29:2446–60.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Campbell A, Bushman J, Munger J, Noble M, Pröschel C, Mayer-Pröschel M. Mutation of ataxia-telangiectasia mutated is associated with dysfunctional glutathione homeostasis in cerebellar astroglia. Glia. 2016;64:227–39.PubMedGoogle Scholar
  246. 246.
    Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.PubMedGoogle Scholar
  247. 247.
    Chung W-S, Allen NJ, Eroglu C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol. 2015;7:a020370.PubMedPubMedCentralGoogle Scholar
  248. 248.
    Itoh N, Itoh Y, Tassoni A, Ren E, Kaito M, Ohno A, et al. Cell-specific and region-specific transcriptomics in the multiple sclerosis model: focus on astrocytes. Proc Natl Acad Sci. 2018;115:E302–9.PubMedGoogle Scholar
  249. 249.
    Schipke CG, Haas B, Kettenmann H. Astrocytes discriminate and selectively respond to the activity of a subpopulation of neurons within the barrel cortex. Cereb Cortex. 2008;18:2450–9.PubMedGoogle Scholar
  250. 250.
    Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32:6391–410.PubMedPubMedCentralGoogle Scholar
  251. 251.
    Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 2018;22:269–85.PubMedPubMedCentralGoogle Scholar
  252. 252.
    Thal DR, Attems J, Ewers M. Spreading of amyloid, tau, and microvascular pathology in Alzheimer’s disease: findings from neuropathological and neuroimaging studies. de la Torre JC, editor. J Alzheimers Dis. 2014;42:S421–9.PubMedGoogle Scholar
  253. 253.
    Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, et al. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006;7:940–6.PubMedPubMedCentralGoogle Scholar
  254. 254.
    Lomoio S, López-González I, Aso E, Carmona M, Torrejón-Escribano B, Scherini E, et al. Cerebellar amyloid-β plaques: disturbed cortical circuitry in AβPP/PS1 transgenic mice as a model of familial Alzheimer’s disease. J Alzheimers Dis. 2012;31:285–300.PubMedGoogle Scholar
  255. 255.
    Gomez-Arboledas A, Davila JC, Sanchez-Mejias E, Navarro V, Nuñez-Diaz C, Sanchez-Varo R, et al. Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease. Glia. 2018;66:637–53.PubMedGoogle Scholar
  256. 256.
    Chun H, Lee CJ. Reactive astrocytes in Alzheimer’s disease: a double-edged sword. Neurosci Res. 2018;126:44–52.PubMedGoogle Scholar
  257. 257.
    González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci. 2017;10:427.PubMedPubMedCentralGoogle Scholar
  258. 258.
    Frost GR, Li Y-M. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol. 2017;7:170228.PubMedPubMedCentralGoogle Scholar
  259. 259.
    Ferreira ST, Klein WL. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem. 2011;96:529–43.PubMedPubMedCentralGoogle Scholar
  260. 260.
    Mucke L, Selkoe DJ. Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med. 2012;2:a006338.PubMedPubMedCentralGoogle Scholar
  261. 261.
    Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, et al. Consensus paper: towards a systems-level view of cerebellar function: the interplay between cerebellum, basal ganglia, and cortex. Cerebellum. 2017;16:203–29.PubMedGoogle Scholar
  262. 262.
    Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ, et al. The roles of the Olivocerebellar pathway in motor learning and motor control. A consensus paper. Cerebellum. 2017;16:230–52.PubMedPubMedCentralGoogle Scholar
  263. 263.
    Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87.PubMedPubMedCentralGoogle Scholar
  264. 264.
    Perciavalle V, Apps R, Bracha V, Delgado-García JM, Gibson AR, Leggio M, et al. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum. 2013;12:738–57.PubMedGoogle Scholar
  265. 265.
    Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017;16:552–76.PubMedGoogle Scholar
  266. 266.
    Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015;14:197–220.PubMedGoogle Scholar
  267. 267.
    Mariën P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13:386–410.PubMedPubMedCentralGoogle Scholar
  268. 268.
    Reeber SL, Otis TS, Sillitoe RV. New roles for the cerebellum in health and disease. Front Syst Neurosci. 2013;7:83.PubMedPubMedCentralGoogle Scholar
  269. 269.
    Varambally S, Venkatasubramanian G, Thirthalli J, Janakiramaiah N, Gangadhar BN. Cerebellar and other neurological soft signs in antipsychotic-naïve schizophrenia. Acta Psychiatr Scand. 2006;114:352–6.PubMedGoogle Scholar
  270. 270.
    Hoppenbrouwers SS, Schutter DJLG, Fitzgerald PB, Chen R, Daskalakis ZJ. The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: a review. Brain Res Rev. 2008;59:185–200.PubMedGoogle Scholar
  271. 271.
    Chamberlain SR, Sahakian BJ. The neuropsychiatry of impulsivity. Curr Opin Psychiatry. 2007;20:255–61.PubMedGoogle Scholar
  272. 272.
    D’Angelo E. Physiol Cerebellum. Handb Clin Neurol. 2018;154:85–108.Google Scholar
  273. 273.
    Stoodley CJ, Stein JF. The cerebellum and dyslexia. Cortex. 2011;47:101–16.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Ciências BiomédicasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations