Advertisement

Cerebellar Transcranial Direct Current Stimulation (ctDCS) Ameliorates Phantom Limb Pain and Non-painful Phantom Limb Sensations

  • Tommaso Bocci
  • Giuliano De Carolis
  • Roberta Ferrucci
  • Mery Paroli
  • Federica Mansani
  • Alberto Priori
  • Massimiliano Valeriani
  • Ferdinando SartucciEmail author
Original Paper

Abstract

Phantom limb pain (PLP) is a disabling and intractable sensation arising in about 80% of patients after amputation. The aim of this study was to evaluate the possibility to modulate nociceptive processing and pain perception with cerebellar transcranial direct current stimulation (ctDCS) in patients suffering from painful and non-painful phantom limb sensations. Fourteen upper limb amputees underwent ctDCS (anodal or sham, 2.0 mA, 20 min per day, 5 days a week). Clinical scores and electrophysiological parameters were assessed before tDCS, at the end of the 5-day treatment, 2 and 4 weeks later. Laser-evoked potentials (LEPs) were obtained from the stump using a Nd:YAP laser by pulses with short duration (5 ms) and small diameter spots (5 mm). Changes in visual analogue scores (VAS) were evaluated (chronic pain, paroxysmal pain, stump pain, phantom movements, phantom sensations). Anodal polarization significantly dampened LEP amplitudes (N1, p = 0.021 and N2/P2, p = 0.0034), whereas sham intervention left them unchanged. Anodal ctDCS significantly reduced paroxysmal pain (p < 0.0001), non-painful phantom limb sensations (p < 0.0001) and phantom limb movements (p = 0.0003), whereas phantom limb and stump pain did not change compared to the sham condition. Anodal ctDCS significantly improves both paroxysmal pain and non-painful phantom limb sensations, which are likely induced by maladaptive changes in the sensorimotor network and posterior parietal cortex respectively.

Keywords

Phantom limb pain tDCS Cerebellum Cerebellar tDCS Phantom pain treatment Pain tDCS 

Notes

Acknowledgments

We gratefully acknowledge the participation of all subjects, as well as Mr. C. Orsini and Mr. D. Barloscio for their excellent technical assistance. The paper was supported in part by the Italian operating and development MIUR PRIN grant year 2006, n.2006062332_002.

Supplementary material

12311_2019_1020_MOESM1_ESM.doc (34 kb)
Supplementary Table 1 (DOC 34 kb)

References

  1. 1.
    Alviar MJ, Hale T, Dungca M. Pharmacologic interventions for treating phantom limb pain. Cochrane Database Syst Rev. 2016;10:CD006380.PubMedGoogle Scholar
  2. 2.
    Flor H. Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol. 2002;1(3):182–9.PubMedGoogle Scholar
  3. 3.
    Kooijman CM, Dijkstra PU, Geertzen JH, Elzinga A, van der Schans CP. Phantom pain and phantom sensations in upper limb amputees: an epidemiological study. Pain. 2000;87(1):33–41.PubMedGoogle Scholar
  4. 4.
    Keil G. So-called initial description of phantom pain by Ambroise pare. “chose digne d’admiration et quasi incredible”: the “douleur es parties mortes et amputees”. Fortschr Med. 1990;108(4):62–6.PubMedGoogle Scholar
  5. 5.
    Diers M, Kamping S, Kirsch P, Rance M, Bekrater-Bodmann R, Foell J, et al. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging. Brain Res. 2015;1594:173–82.PubMedGoogle Scholar
  6. 6.
    Diers M, Christmann C, Koeppe C, Ruf M, Flor H. Mirrored, imagined and executed movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. Pain. 2010;149(2):296–304.PubMedGoogle Scholar
  7. 7.
    Flor H, Nikolajsen L, Staehelin JT. Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci. 2006;7(11):873–81.PubMedGoogle Scholar
  8. 8.
    Lotze M, Flor H, Grodd W, Larbig W, Birbaumer N. Phantom movements and pain. An fMRI study in upper limb amputees. Brain. 2001;124(Pt 11):2268–77.PubMedGoogle Scholar
  9. 9.
    Suzuki R, Dickenson A. Spinal and supraspinal contributions to central sensitization in peripheral neuropathy. Neurosignals. 2005;14(4):175–81.PubMedGoogle Scholar
  10. 10.
    Karl A, Birbaumer N, Lutzenberger W, Cohen LG, Flor H. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J Neurosci. 2001;21(10):3609–18.PubMedGoogle Scholar
  11. 11.
    Wrigley PJ, Press SR, Gustin SM, Macefield VG, Gandevia SC, Cousins MJ, et al. Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain. 2009;141(1–2):52–9.PubMedGoogle Scholar
  12. 12.
    Raffin E, Richard N, Giraux P, Reilly KT. Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb. Neuroimage. 2016;130:134–44.PubMedGoogle Scholar
  13. 13.
    Andoh J, Milde C, Tsao JW, Flor H. Cortical plasticity as a basis of phantom limb pain: fact or fiction? Neuroscience. 2018;387:85–91.PubMedGoogle Scholar
  14. 14.
    Kikkert S, Johansen-Berg H, Tracey I, Makin TR. Reaffirming the link between chronic phantom limb pain and maintained missing hand representation. Cortex. 2018;106:174–84.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Makin TR, Scholz J, Filippini N, Henderson Slater D, Tracey I, Johansen-Berg H. Phantom pain is associated with preserved structure and function in the former hand area. Nat Commun. 2013;4:1570.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ferraro F, Jacopetti M, Spallone V, Padua L, Traballesi M, Brunelli S, et al. Diagnosis and treatment of pain in plexopathy, radiculopathy, peripheral neuropathy and phantom limb pain. Evidence and recommendations from the Italian consensus conference on pain on Neurorehabilitation. Eur J Phys Rehabil Med. 2016;52(6):855–66.PubMedGoogle Scholar
  17. 17.
    McAuley J, van Groningen R, Green C. Spinal cord stimulation for intractable pain following limb amputation. Neuromodulation. 2013;16(6):530–6 discussion 6.PubMedGoogle Scholar
  18. 18.
    Aiyer R, Barkin RL, Bhatia A, Gungor S. A systematic review on the treatment of phantom limb pain with spinal cord stimulation. Pain Manag. 2017;7(1):59–69.PubMedGoogle Scholar
  19. 19.
    Borsook D, Moulton EA, Tully S, Schmahmann JD, Becerra L. Human cerebellar responses to brush and heat stimuli in healthy and neuropathic pain subjects. Cerebellum. 2008;7(3):252–72.PubMedGoogle Scholar
  20. 20.
    Duerden EG, Albanese MC. Localization of pain-related brain activation: a meta-analysis of neuroimaging data. Hum Brain Mapp. 2013;34(1):109–49.PubMedGoogle Scholar
  21. 21.
    Bocci T, Santarcangelo E, Vannini B, Torzini A, Carli G, Ferrucci R, et al. Cerebellar direct current stimulation modulates pain perception in humans. Restor Neurol Neurosci. 2015;33(5):597–609.PubMedGoogle Scholar
  22. 22.
    Bocci T, Barloscio D, Parenti L, Sartucci F, Carli G, Santarcangelo EL. High hypnotizability impairs the cerebellar control of pain. Cerebellum. 2017;16(1):55–61.PubMedGoogle Scholar
  23. 23.
    Baarbe JK, Yielder P, Haavik H, Holmes MWR, Murphy BA. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex. PLoS One. 2018;13(2):e0193413.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Pereira M, Rafiq B, Chowdhury E, Babayev J, Boo H, Metwaly R, et al. Anodal cerebellar tDCS modulates lower extremity pain perception. NeuroRehabilitation. 2017;40(2):195–200.PubMedGoogle Scholar
  25. 25.
    Valeriani M, Le Pera D, Restuccia D, de Armas L, Miliucci R, Betti V, et al. Parallel spinal pathways generate the middle-latency N1 and the late P2 components of the laser evoked potentials. Clin Neurophysiol. 2007;118(5):1097–104.PubMedGoogle Scholar
  26. 26.
    Valeriani M, Pazzaglia C, Cruccu G, Truini A. Clinical usefulness of laser evoked potentials. Neurophysiol Clin. 2012;42(5):345–53.PubMedGoogle Scholar
  27. 27.
    Garcia-Larrea L, Frot M, Valeriani M. Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol Clin. 2003;33(6):279–92.PubMedGoogle Scholar
  28. 28.
    Vogt BA, Derbyshire S, Jones AK. Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. Eur J Neurosci. 1996;8(7):1461–73.PubMedGoogle Scholar
  29. 29.
    Bolognini N, Olgiati E, Maravita A, Ferraro F, Fregni F. Motor and parietal cortex stimulation for phantom limb pain and sensations. Pain. 2013;154(8):1274–80.PubMedGoogle Scholar
  30. 30.
    Bolognini N, Spandri V, Ferraro F, Salmaggi A, Molinari AC, Fregni F, et al. Immediate and sustained effects of 5-day transcranial direct current stimulation of the motor cortex in phantom limb pain. J Pain. 2015;16(7):657–65.PubMedGoogle Scholar
  31. 31.
    Truini A, Galeotti F, Romaniello A, Virtuoso M, Iannetti GD, Cruccu G. Laser-evoked potentials: normative values. Clin Neurophysiol. 2005;116(4):821–6.PubMedGoogle Scholar
  32. 32.
    Truini A, Panuccio G, Galeotti F, Maluccio MR, Sartucci F, Avoli M, et al. Laser-evoked potentials as a tool for assessing the efficacy of antinociceptive drugs. Eur J Pain. 2010;14(2):222–5.PubMedGoogle Scholar
  33. 33.
    Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119(8):1705–19.PubMedGoogle Scholar
  34. 34.
    Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–97.PubMedGoogle Scholar
  35. 35.
    Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013;12(4):485–92.PubMedGoogle Scholar
  36. 36.
    Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005;64(5):872–5.PubMedGoogle Scholar
  37. 37.
    Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol. 2003;114(11):2220–2 author reply 2-3.PubMedGoogle Scholar
  38. 38.
    Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845–50.PubMedGoogle Scholar
  39. 39.
    Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Bocci T, Ferrucci R, Barloscio D, Parenti L, Cortese F, Priori A, et al. Cerebellar direct current stimulation modulates hand blink reflex: implications for defensive behavior in humans. Physiol Rep. 2018;6(10):e13471.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Parazzini M, Rossi E, Ferrucci R, Liorni I, Priori A, Ravazzani P. Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans. Clin Neurophysiol. 2014;125(3):577–84.PubMedGoogle Scholar
  42. 42.
    Parazzini M, Rossi E, Ferrucci R, Fiocchi S, Liorni I, Priori A, et al. Computational model of cerebellar transcranial direct current stimulation. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:237–40.PubMedGoogle Scholar
  43. 43.
    Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):1133–45.PubMedGoogle Scholar
  44. 44.
    Pinto CB, Saleh Velez FG, Bolognini N, Crandell D, Merabet LB, Fregni F. Optimizing rehabilitation for phantom limb pain using mirror therapy and transcranial direct current stimulation: a randomized, double-blind clinical trial study protocol. JMIR Res Protoc. 2016;5(3):e138.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Moseley GL, Flor H. Targeting cortical representations in the treatment of chronic pain: a review. Neurorehabil Neural Repair. 2012;26(6):646–52.PubMedGoogle Scholar
  46. 46.
    MacIver K, Lloyd DM, Kelly S, Roberts N, Nurmikko T. Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain. 2008;131(Pt 8):2181–91.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Malavera A, Silva FA, Fregni F, Carrillo S, Garcia RG. Repetitive transcranial magnetic stimulation for phantom limb pain in land mine victims: a double-blinded, randomized, sham-controlled trial. J Pain. 2016;17(8):911–8.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Topper R, Foltys H, Meister IG, Sparing R, Boroojerdi B. Repetitive transcranial magnetic stimulation of the parietal cortex transiently ameliorates phantom limb pain-like syndrome. Clin Neurophysiol. 2003;114(8):1521–30.PubMedGoogle Scholar
  49. 49.
    Ahmed MA, Mohamed SA, Sayed D. Long-term antalgic effects of repetitive transcranial magnetic stimulation of motor cortex and serum beta-endorphin in patients with phantom pain. Neurol Res. 2011;33(9):953–8.PubMedGoogle Scholar
  50. 50.
    Lee JH, Byun JH, Choe YR, Lim SK, Lee KY, Choi IS. Successful treatment of phantom limb pain by 1 Hz repetitive transcranial magnetic stimulation over affected supplementary motor complex: a case report. Ann Rehabil Med. 2015;39(4):630–3.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Garcia-Larrea L, Peyron R, Laurent B, Mauguiere F. Association and dissociation between laser-evoked potentials and pain perception. Neuroreport. 1997;8(17):3785–9.PubMedGoogle Scholar
  52. 52.
    Rosen G, Hugdahl K, Ersland L, Lundervold A, Smievoll AI, Barndon R, et al. Different brain areas activated during imagery of painful and non-painful ‘finger movements’ in a subject with an amputated arm. Neurocase. 2001;7(3):255–60.PubMedGoogle Scholar
  53. 53.
    Anderson WS, Lenz FA. Review of motor and phantom-related imagery. Neuroreport. 2011;22(17):939–42.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Raffin E, Mattout J, Reilly KT, Giraux P. Disentangling motor execution from motor imagery with the phantom limb. Brain. 2012;135(Pt 2):582–95.PubMedGoogle Scholar
  55. 55.
    Kikkert S, Mezue M, O'Shea J, Henderson Slater D, Johansen-Berg H, Tracey I, et al. Neural basis of induced phantom limb pain relief. Ann Neurol. 2019;85(1):59–73.PubMedGoogle Scholar
  56. 56.
    Cohen LG, Bandinelli S, Findley TW, Hallett M. Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain. 1991;114(Pt 1B):615–27.PubMedGoogle Scholar
  57. 57.
    Dettmers C, Adler T, Rzanny R, van Schayck R, Gaser C, Weiss T, et al. Increased excitability in the primary motor cortex and supplementary motor area in patients with phantom limb pain after upper limb amputation. Neurosci Lett. 2001;307(2):109–12.PubMedGoogle Scholar
  58. 58.
    Truini A, Galeotti F, Haanpaa M, Zucchi R, Albanesi A, Biasiotta A, et al. Pathophysiology of pain in postherpetic neuralgia: a clinical and neurophysiological study. Pain. 2008;140(3):405–10.PubMedGoogle Scholar
  59. 59.
    Truini A, Padua L, Biasiotta A, Caliandro P, Pazzaglia C, Galeotti F, et al. Differential involvement of A-delta and A-beta fibres in neuropathic pain related to carpal tunnel syndrome. Pain. 2009;145(1–2):105–9.PubMedGoogle Scholar
  60. 60.
    Singer T, Seymour B, O'Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303(5661):1157–62.PubMedGoogle Scholar
  61. 61.
    Ehde DM, Czerniecki JM, Smith DG, Campbell KM, Edwards WT, Jensen MP, et al. Chronic phantom sensations, phantom pain, residual limb pain, and other regional pain after lower limb amputation. Arch Phys Med Rehabil. 2000;81(8):1039–44.PubMedGoogle Scholar
  62. 62.
    Hunter JP, Katz J, Davis KD. Dissociation of phantom limb phenomena from stump tactile spatial acuity and sensory thresholds. Brain. 2005;128(Pt 2):308–20.PubMedGoogle Scholar
  63. 63.
    Becotte A, de Medicis E, Lapie V, Martin R, Gagnon V. Preoperative continuous sciatic nerve block for perioperative analgesia and for phantom limb prevention. J Clin Anesth. 2012;24(3):256–7.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Section of Neurophysiopathology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
  2. 2.“Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health SciencesUniversity of Milan & ASST Santi Paolo e CarloMilanItaly
  3. 3.Anesthesiology & Pain Therapy UnitSanta Chiara University HospitalPisaItaly
  4. 4.Division of NeurologyOspedale Bambino GesùRomeItaly
  5. 5.Center for Sensory-Motor InteractionAalborg UniversityAalborgDenmark

Personalised recommendations