The Cerebellum Modulates Attention Network Functioning: Evidence from a Cerebellar Transcranial Direct Current Stimulation and Attention Network Test Study

  • Daniela MannarelliEmail author
  • Caterina Pauletti
  • Antonio Currà
  • Lucio Marinelli
  • Alessandra Corrado
  • Roberto Delle Chiaie
  • Francesco Fattapposta
Original Paper


The functional domain of the cerebellum extends beyond its traditional role in motor control. In recent years, this structure has increasingly been considered to play a crucial role even in cognitive performance and attentional processes. Attention is defined as the ability to appropriately allocate processing resources to relevant stimuli. According to the Posnerian model, three interacting networks modulate attentive processes: the alerting, orienting, and executive networks. The aim of this study was to investigate the role played by the cerebellum in the functioning of the attentive networks using the Attention Network Test (ANT). We studied the effects of transcranial direct current stimulation (tDCS), delivered over the cerebellum in cathodal, anodal, and sham sessions, on ANT parameters in healthy subjects. After anodal and sham tDCS, the efficiency of the three attention networks remained stable, and a significant reduction in reaction time (RT) following the task repetition was observed for both congruent and incongruent targets, indicating a learning effect. After cathodal stimulation, instead, while the efficiency of the alerting and orienting networks remained stable, the efficiency of the executive network was significantly reduced. Moreover, a significant reduction in RT was observed for the congruent target alone, with no difference being detected for the incongruent target, indicating that cerebellar inhibition caused an attentive executive dysfunction specifically related to the ability to process complex stimuli in which conflict signals or errors are present. These results point to a role of the cerebellum, a subcortical structure that is thought to affect error processing both directly, by making predictions of errors or behaviors related to errors, and indirectly, by managing the functioning of brain cortical areas involved in the perception of conflicting signals, in the functioning of the attentional networks, particularly the executive network.


Cerebellum Attention Attention Network Test tDCS 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Holmes G. Clinical symptoms of cerebellar disease and their interpretation. Lancet. 1922;2:59–65.Google Scholar
  2. 2.
    Ivry RB, Fiez JA. Cerebellar contributions to cognition and imagery. In: Gazzaniga M, editor. The cognitive neurosciences (2nd edn): MIT Press; 2000. p. 999–1011.Google Scholar
  3. 3.
    Baillieux H, DeSmet HJ, Paquier PF, DeDeyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.PubMedGoogle Scholar
  4. 4.
    Sokolov AA, Miall RC, Ivry RB. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci. 2017;21:313–32.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sasaki K. Cerebello-cerebral interactions in cats and monkeys. In: Massion J, Sasaki K, editors. Cerebro-cerebellar interactions. Amsterdam: Elsevier; 1979. p. 105–24.Google Scholar
  6. 6.
    Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.PubMedGoogle Scholar
  7. 7.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of an on human primate. J Neurosci. 2003;23:8432–44.PubMedGoogle Scholar
  8. 8.
    Schmahmann JD. The cerebellum and cognition. San Diego: Academic Press; 1997.Google Scholar
  9. 9.
    Heyder K, Suchan B, Daum I. Cortico-subcortical contributions to executive control. Acta Psychol. 2004;115:271–89.Google Scholar
  10. 10.
    Ivry RB, Diener HC. Impaired velocity perception in patients with lesions of the cerebellum. J Cogn Neurosci. 1991;3(4):355–66.PubMedGoogle Scholar
  11. 11.
    Cabeza R, Nyberg L. Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol. 2000;13(4):415–21.PubMedGoogle Scholar
  12. 12.
    Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.PubMedGoogle Scholar
  13. 13.
    Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1(2):136–52.PubMedGoogle Scholar
  14. 14.
    Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60(2):323–31.PubMedGoogle Scholar
  15. 15.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.PubMedGoogle Scholar
  16. 16.
    Botez-Marquard T, Bard C, Léveillé J, Botez MI. A severe frontal-parietal lobe syndrome following cerebellar damage. Eur J Neurol. 2001;8(4):347–53.PubMedGoogle Scholar
  17. 17.
    Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Psychol. 2005;35:773–9.Google Scholar
  18. 18.
    Lazeron RH, Rombouts SA, Machielsen WC, Scheltens P, Witter MP, Uylings HB, et al. Visualizing brain activation during planning: the tower of London test adapted for functional MR imaging. AJNR Am J Neuroradiol. 2000;21(8):1407–14.PubMedGoogle Scholar
  19. 19.
    Ravnkilde B, Videbech P, Rosenberg R, Gjedde A, Gade A. Putative tests of frontal lobe function: a PET-study of brain activation during Stroop’s test and verbal fluency. J Clin Exp Neuropsychol. 2002;24:534–47.PubMedGoogle Scholar
  20. 20.
    Lie CH, Specht K, Marshall JC. Using fMRI to decompose the neural processes underlying the Wisconsin card sorting test. NeuroImage. 2006;30:1038–49.PubMedGoogle Scholar
  21. 21.
    Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.PubMedGoogle Scholar
  22. 22.
    Lupo M, Olivito G, Iacobacci C, Clausi S, Romano S, Masciullo M, et al. The cerebellar topography of attention sub-components in spinocerebellar ataxia type 2. Cortex. 2018;108:35–49.PubMedGoogle Scholar
  23. 23.
    Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75.PubMedGoogle Scholar
  24. 24.
    Ciesilski KT, Courchesne E, Elmasian R. Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencephalogr Clin Neurophysiol. 1990;75:207–20.Google Scholar
  25. 25.
    Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain BA, Rapoport JL, et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50(4):1087–93.PubMedGoogle Scholar
  26. 26.
    Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123:836–44.PubMedGoogle Scholar
  27. 27.
    Le TH, Pardo JV, Hu X. 4T-fMRI study of non spatial shifting of selective attention: cerebellar and parietal contributions. J Neurophysiol. 1998;79:1535–48.PubMedGoogle Scholar
  28. 28.
    Schweizer TA, Alexander MP, Cusimano M, Stuss DT. Fast and efficient visuotemporal attention requires the cerebellum. Neuropsychologia. 2007;45(13):3068–74.PubMedGoogle Scholar
  29. 29.
    Striemer CL, Cantelmi D, Cusimano MD, Danckert JA, Schweizer TA. Deficits in reflexive covert attention following cerebellar injury. Front Hum Neurosci. 2015;9:428.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia. 2003;41:1452–60.PubMedGoogle Scholar
  31. 31.
    Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology. 2004;63:2132–5.PubMedGoogle Scholar
  32. 32.
    Arasanz CP, Staines WR, Schweizer TA. Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation. Front Behav Neurosci. 2012;6:55.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Picazio S, Granata C, Caltagirone C, Petrosini L, Oliveri M. Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening. Front Hum Neurosci. 2015;9:158.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Esterman M, Thai M, Okabe H, DeGutis J, Saad E, Laganiere SE, et al. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control. Neuroimage. 2017;156:190–8.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Moberget T, Karns CM, Deouell LY, Lindgren M, Knight RT, Ivry RB. Detecting violations of sensory expectancies following cerebellar degeneration: a mismatch negativity study. Neuropsychologia. 2008;46(10):2569–79.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Paulus KS, Magnano I, Conti M, Galistu P, D’Onofrio M, Satta W, et al. Pure post stroke cerebellar cognitive affective syndrome: a case report. Neurol Sci. 2004;25(4):220–4.PubMedGoogle Scholar
  37. 37.
    Adamaszek M, Olbrich S, Kirkby KC, Woldag H, Willert C, Heinrich A. Event-related potentials indicating impaired emotional attention in cerebellar stroke—a case study. Neurosci Lett. 2013;548:206–11.PubMedGoogle Scholar
  38. 38.
    Mannarelli D, Pauletti C, DeLucia MC, Currà A, Fattapposta F. Insights from ERPs into attention during recovery after cerebellar stroke: a case report. Neurocase. 2015;21(6):721–6.PubMedGoogle Scholar
  39. 39.
    Mannarelli D, Pauletti C, De Lucia MC, Delle Chiaie R, Bersani FS, Spagnoli F, et al. Effects of cerebellar transcranial direct current stimulation on attentional processing of the stimulus: evidence from an event-related potentials study. Neuropsychologia. 2016;84:127–35.PubMedGoogle Scholar
  40. 40.
    Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114(4):589–95.PubMedGoogle Scholar
  41. 41.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012;216:1–10.PubMedGoogle Scholar
  43. 43.
    Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimul. 2014;3:468–75.Google Scholar
  44. 44.
    Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.PubMedGoogle Scholar
  45. 45.
    Pellicciari MC, Brignani D, Miniussi C. Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach. NeuroImage. 2013;83:569–80.PubMedGoogle Scholar
  46. 46.
    Romero Lauro LJ, Pisoni A, Rosanova M, Casarotto S, Mattavelli G, Bolognini N, et al. Localizing the effects of anodal tDCS at the level of cortical sources: a reply to bailey et al., 2015. Cortex. 2016;74:323–8.PubMedGoogle Scholar
  47. 47.
    Pisoni A, Mattavelli G, Papagno C, Rosanova M, Casali AG, Romero Lauro LJ. Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity. Cereb Cortex. 2017:1–9.Google Scholar
  48. 48.
    Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, et al. Efficacy of repetitive transcranial magnetic stimulation/ transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimul. 2008;1:326–36.PubMedGoogle Scholar
  49. 49.
    Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci. 1990;13:25–42.PubMedGoogle Scholar
  50. 50.
    Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci. 2002;14:340–7.PubMedGoogle Scholar
  51. 51.
    Posner MI. Orienting of attention. Q J Exp Psychol. 1980;32(1):3–25.PubMedGoogle Scholar
  52. 52.
    Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16:143–9.Google Scholar
  53. 53.
    Howes D, Boller F. Simple reaction time: evidence for focal impairments from lesions of the right hemisphere. Brain. 1975;98:317–32.PubMedGoogle Scholar
  54. 54.
    Ladavas E. Is hemispatial deficit produced by right parietal lobe damage associated with retinal or gravitational coordinates? Brain. 1987;110:167–80.PubMedGoogle Scholar
  55. 55.
    Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5:84–94.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, et al. Formation of a motor memory by action observation. J Neurosci. 2005;25:9339–46.PubMedGoogle Scholar
  57. 57.
    Ferrucci R, Marceglia S, Vergari M, Cogiamanian F, Mrakic-Sposta S, Mameli F, et al. Cerebellar transcranial direct current stimulation impairs the practice dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20:1687–97.PubMedGoogle Scholar
  58. 58.
    Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 2003;114(11):2220–2, 2222.Google Scholar
  59. 59.
    Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117:845–50.PubMedGoogle Scholar
  60. 60.
    Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72(4–6):208–14.PubMedGoogle Scholar
  61. 61.
    Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–809.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Richardson JTE. Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review. 2011;6:135–47.Google Scholar
  63. 63.
    Colebatch JG. Bereitschafts potential and movement-related potentials: origin, significance, and application in disorders of human movement. Mov Disord. 2007;22:601–10.PubMedGoogle Scholar
  64. 64.
    Horner AJ, Henson RN. Priming, response learning and repetition suppression. Neuropsychologia. 2008;46:1979–91.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Notebaert W, Houtman F, Opstal FV, Gevers W, Fias W, Verguts T. Post-error slowing: an orienting account. Cognition. 2009;111:275–9.PubMedGoogle Scholar
  66. 66.
    Wessel JR, Danielmeier C, Morton JB, Ullsperger M. Surprise and error: common neuronal architecture for the processing of errors and novelty. J Neurosci. 2012;32(22):7528–37.PubMedGoogle Scholar
  67. 67.
    Falkenstein M, Hohnsbein J, Hoormann J, Blanke L. Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol. 1991;78:447–55.PubMedGoogle Scholar
  68. 68.
    Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. A neural system for error-detection and compensation. Psychol Sci. 1993;4:385–90.Google Scholar
  69. 69.
    Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci. 2005;25:11730–7.PubMedGoogle Scholar
  70. 70.
    Menon V, Adleman NE, White CD, Glover GH, Reiss AL. Error-related brain activation during a go/NoGo response inhibition task. Hum Brain Mapp. 2001;12(3):131–43.PubMedGoogle Scholar
  71. 71.
    Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control. Science. 2004;306:443–7.PubMedGoogle Scholar
  72. 72.
    Taylor SF, Welsh RC, Chen AC, Velander AJ, Liberzon I. Medial frontal hyperactivity in reality distortion. Biol Psychiatry. 2007;61(10):1171–8.PubMedGoogle Scholar
  73. 73.
    Posner MI, Inhoff A, Friedrich F. Isolating attentional systems: a cognitive anatomical analysis. Psychobiology. 1987;15:107–21.Google Scholar
  74. 74.
    Mesulam MM. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci. 1999;354:1325–46.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.PubMedGoogle Scholar
  76. 76.
    Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMedGoogle Scholar
  77. 77.
    Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex. 2006;16:811–8.PubMedGoogle Scholar
  78. 78.
    O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.PubMedGoogle Scholar
  79. 79.
    Liu X, Robertson E, Miall RC. Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex. J Neurophysiol. 2003;89:1223–37.PubMedGoogle Scholar
  80. 80.
    Ebner TJ, Hewitt AL, Popa LS. What features of limb movements are encoded in the discharge of cerebellar neurons? Cerebellum. 2011;10:683–93.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Bolognini N, Fregni F, Casati C, Olgiati E, Vallar G. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res. 2010a;1349:76–89.PubMedGoogle Scholar
  83. 83.
    Bolognini N, Olgiati E, Rossetti A, Maravita A. Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. Eur J Neurosci. 2010b;31(10):1800–6.PubMedGoogle Scholar
  84. 84.
    Coffman BA, Trumbo MC, Clark VP. Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neurosci. 2012;13:108.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Roy LB, Sparing R, Fink GR, Hesse MD. Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia. 2015;74:96–107.PubMedGoogle Scholar
  86. 86.
    Moos K, Vossel S, Weidner R, Sparing R, Fink GR. Modulation of top-down control of visual attention by cathodal tDCS over right IPS. J Neurosci. 2012;32(46):16360–8.PubMedGoogle Scholar
  87. 87.
    Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37(8):1702–12.PubMedGoogle Scholar
  88. 88.
    Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2018;17(2):228–36.PubMedGoogle Scholar
  89. 89.
    Teo F, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psychiatry. 2011;2:45.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Ball K, Lane AR, Smith DT, Ellison A. Site-dependent effects of tDCS uncover dissociations in the communication network underlying the processing of visual search. Brain Stimul. 2013;6(6):959–65.PubMedGoogle Scholar
  91. 91.
    Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):1987–2000.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Pirulli C, Fertonani A, Miniussi C. The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimul. 2013;6(4):683–9.PubMedGoogle Scholar
  93. 93.
    Pirulli C, Fertonani A, Miniussi C. Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Front Behav Neurosci. 2014;8:226.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Daniela Mannarelli
    • 1
    Email author
  • Caterina Pauletti
    • 1
  • Antonio Currà
    • 2
    • 3
  • Lucio Marinelli
    • 4
  • Alessandra Corrado
    • 1
  • Roberto Delle Chiaie
    • 1
  • Francesco Fattapposta
    • 1
  1. 1.Department of Human NeurosciencesSapienza University of RomeRomeItaly
  2. 2.Department of Medical-Surgical Sciences and BiotechnologiesA. Fiorini HospitalTerracinaItaly
  3. 3.Sapienza University of Rome, Polo PontinoLatinaItaly
  4. 4.Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenoaItaly

Personalised recommendations