Advertisement

Ocular Motor System Control Models and the Cerebellum: Hypothetical Mechanisms

  • Louis F. Dell’OssoEmail author
Review
  • 30 Downloads

Abstract

To review our studies and “top-down” models of saccadic intrusions and infantile nystagmus syndrome with the aim of hypothesizing areas of cerebellar connections controlling parts of the ocular motor subsystems involved in both types of function and dysfunction. The methods of eye-movement recording and modeling are described in detail in the cited references. Saccadic intrusions, such as square-wave jerks and square-wave oscillations, can be simulated by a single malfunction, whereas staircase saccadic intrusions required two independent malfunctions. The major infantile nystagmus syndrome waveforms are traceable to a failure to calibrate the damping ratio of the smooth pursuit system. The use of a behavioral ocular motor system model demonstrated how putative cerebellar dysfunctions could accurately simulate both the oscillations and the ocular motor responses seen in patients with both saccadic and pursuit disorders.

Keywords

Ocular motor system Cerebellum Saccadic intrusions/oscillations Nystagmus 

Notes

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Robinson DA. How the oculomotor system repairs itself. Investig Ophthalmol. 1975;14:413.Google Scholar
  2. 2.
    Young LR, Stark L. A discrete model for eye tracking movements. IEEE Trans Military Elect MIL. 1963;7:13–115.Google Scholar
  3. 3.
    Robinson DA. Models of oculomotor neural organization. In: Bach-y-Rita P, Collins CC, Hyde JE, editors. The control of eye movements. New York: Academic; 1971. p. 519–38.CrossRefGoogle Scholar
  4. 4.
    Robinson DA. Models of saccadic eye movement control systems. Kybernetik. 1973;14:71–83.CrossRefGoogle Scholar
  5. 5.
    Cannon SC, Robinson DA. Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol. 1987;57:1383–409.CrossRefGoogle Scholar
  6. 6.
    Dell’osso LF. A dual-mode model for the normal eye tracking system and the system with nystagmus (PhD dissertation). Laramie: University of Wyoming; 1968. p. 1–131.Google Scholar
  7. 7.
    CEMAS_Working_Group. A National Eye Institute sponsored workshop and publication on the Classification of Eye Movement Abnormalities and Strabismus (CEMAS). In The National Eye Institute publications. 2001. nei.nih.gov-sites-default-files-nei-pdfs-cemas. Accessed 30 Dec 2018.
  8. 8.
    Abel LA, Dell'Osso LF, Daroff RB. Analog model for gaze-evoked nystagmus. IEEE Trans Biomed Eng. 1978;BME-25:71–5.CrossRefGoogle Scholar
  9. 9.
    Abel LA, Dell'Osso LF, Schmidt D, Daroff RB. Myasthenia gravis: analogue computer model. Exp Neurol. 1980;68:378–89.CrossRefGoogle Scholar
  10. 10.
    Dell'Osso LF, Ayyar DR, Daroff RB, Abel LA. Edrophonium test in Eaton-Lambert syndrome: quantitative oculography. Neurology. 1983;33:1157–63.CrossRefGoogle Scholar
  11. 11.
    Rucker JC, Dell'Osso LF, Jacobs JB, Serra A. “Staircase” saccadic intrusions plus transient yoking and neural integrator failure associated with cerebellar hypoplasia: a model simulation. Semin Ophthalmol. 2006;21:229–43.CrossRefGoogle Scholar
  12. 12.
    Dell'Osso LF, Gauthier G, Liberman G, Stark L. Eye movement recordings as a diagnostic tool in a case of congenital nystagmus. Am J Optom Arch Am Acad Optom. 1972;49:3–13.CrossRefGoogle Scholar
  13. 13.
    Dell'Osso LF. Fixation characteristics in hereditary congenital nystagmus. Am J Optom Arch Am Acad Optom. 1973;50:85–90.CrossRefGoogle Scholar
  14. 14.
    Dell'Osso LF, Flynn JT, Daroff RB. Hereditary congenital nystagmus: an intrafamilial study. Arch Ophthalmol. 1974;92:366–74.CrossRefGoogle Scholar
  15. 15.
    Dell'Osso LF, Daroff RB. Congenital nystagmus waveforms and foveation strategy. Doc Ophthalmol. 1975;39:155–82.CrossRefGoogle Scholar
  16. 16.
    Dell'Osso LF, Flynn JT. Congenital nystagmus surgery: a quantitative evaluation of the effects. Arch Ophthalmol. 1979;97:462–9.CrossRefGoogle Scholar
  17. 17.
    Dell'Osso LF. Congenital, latent and manifest latent nystagmus—similarities, differences and relation to strabismus. Jpn J Ophthalmol. 1985;29:351–68.PubMedGoogle Scholar
  18. 18.
    Dell'Osso LF. Evaluation of smooth pursuit in the presence of congenital nystagmus. Neuro-Ophthalmology. 1986;6:383–406.CrossRefGoogle Scholar
  19. 19.
    Dell'Osso LF, Van der Steen J, Steinman RM, Collewijn H. Foveation dynamics in congenital nystagmus I: fixation. Doc Ophthalmol. 1992;79:1–23.CrossRefGoogle Scholar
  20. 20.
    Dell'Osso LF, Van der Steen J, Steinman RM, Collewijn H. Foveation dynamics in congenital nystagmus II: smooth pursuit. Doc Ophthalmol. 1992;79:25–49.CrossRefGoogle Scholar
  21. 21.
    Dell'Osso LF, Van der Steen J, Steinman RM, Collewijn H. Foveation dynamics in congenital nystagmus. III: vestibulo-ocular reflex. Doc Ophthalmol. 1992;79:51–70.CrossRefGoogle Scholar
  22. 22.
    Dell'Osso LF, Williams RW, Jacobs JB, Erchul DM. The congenital and see-saw nystagmus in the prototypical achiasma of canines: comparison to the human achiasmatic prototype. Vis Res. 1998;38:1629–41.CrossRefGoogle Scholar
  23. 23.
    Dell'Osso LF, Hertle RW, Williams RW, Jacobs JB. A new surgery for congenital nystagmus: effects of tenotomy on an achiasmatic canine and the role of extraocular proprioception. J AAPOS. 1999;3:166–82.CrossRefGoogle Scholar
  24. 24.
    Dell'Osso LF. Nystagmus therapies: types, sites, and measures. OMLAB Report. 2005;111905:1–4.Google Scholar
  25. 25.
    Dell'Osso LF. Original ocular motor analysis of the first human with achiasma: documentation of work done in 1994. OMLAB Report. 2006;090506:1–21.Google Scholar
  26. 26.
    Dell’Osso LF, Wang Z, Leigh RJ, Jacobs JB. Hypothetical explanation for the role of proprioception in the damping of infantile nystagmus by tenotomy surgery: the small-signal gain hypothesis. In: Callaos N, editors. Proceedings of the WMSCI 2006 Conference. Orlando, FL; 2006. pp. 39–44.Google Scholar
  27. 27.
    Dell'Osso LF, Hertle RW, Leigh RJ, Jacobs JB, King S, Yaniglos S. Effects of topical brinzolamide on infantile nystagmus syndrome waveforms: eye drops for nystagmus. J Neuroophthalmol. 2011;31:228–33.PubMedGoogle Scholar
  28. 28.
    Dell'Osso LF, Jacobs JB. Normal pursiut-system limitations—first discovered in infantile nystagmus syndrome. J Eye Mov Res. 2013;6:1–24.Google Scholar
  29. 29.
    Dell'Osso LF. Nystagmus basics. Normal models that simulate dysfunction. In: Hung GK, Ciuffreda KJ, editors. Models of the visual system. New York: Kluwer Academic/Plenum Publishers; 2002. p. 711–39.CrossRefGoogle Scholar
  30. 30.
    Jacobs JB, Dell'Osso LF. Congenital nystagmus: hypothesis for its genesis and complex waveforms within a behavioral ocular motor system model. JOV. 2004;4:604–25.CrossRefGoogle Scholar
  31. 31.
    Wang ZI, Dell'Osso LF. A unifying model-based hypothesis for the diverse waveforms of infantile nystagmus syndrome. J Eye Mov Res. 2011;4:1–18.Google Scholar
  32. 32.
    Dell'Osso LF. A hypothetical fixation system capable of extending foveation in congenital nystagmus. J Neuroophthalmol. 2002;22:185–6.Google Scholar
  33. 33.
    Wang ZI, Dell'Osso LF. Being “slow to see” is a dynamic visual function consequence of infantile nystagmus syndrome: model predictions and patient data identify stimulus timing as its cause. Vis Res. 2007;47:1550–60.CrossRefGoogle Scholar
  34. 34.
    Tusa RJ, Hove MT. Ocular and oculomotor signs in Joubert syndrome. J Child Neurol. 1999;14:621–7.CrossRefGoogle Scholar
  35. 35.
    Leigh RJ, Zee DS. The neurology of eye movements. In: Contemporary neurology series. edition 3 ed. New York: Oxford University Press; 1999.Google Scholar
  36. 36.
    Yachnis AT, Rorke LB. Neuropathology of Joubert syndrome. J Child Neurol. 1999;14:655–72.CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.From the Daroff-Dell’Osso Ocular Motility Laboratory, Louis Stokes Cleveland Department of Veterans Affairs Medical Center and CASE Medical School; and the Department of NeurologyCase Western Reserve University and University Hospitals Case Medical CenterClevelandUSA

Personalised recommendations