Advertisement

The Cerebellum

, Volume 18, Issue 2, pp 196–202 | Cite as

Abnormal Findings in Polysomnographic Recordings of Patients with Spinocerebellar Ataxia Type 2 (SCA2)

  • Alessandra ZanattaEmail author
  • Carlos Henrique Ferreira Camargo
  • Francisco Manoel Branco Germiniani
  • Salmo Raskin
  • Ana Chrystina de Souza Crippa
  • Hélio Afonso Ghizoni Teive
Original Paper
  • 55 Downloads

Abstract

Spinocerebellar ataxia type 2 (SCA2) is characterized by a progressive cerebellar syndrome, and additionally saccadic slowing, cognitive dysfunction, and sleep disorders. The aim of this study was to assess the frequency of abnormal findings in sleep recordings of patients with SCA2. Seventeen patients with genetically confirmed SCA2 from the Movement Disorders Outpatient group of the Hospital de Clínicas da UFPR were evaluated with a structured medical interview and the Scale for the Assessment and Rating of Ataxia (SARA). Polysomnographic recordings were performed and sleep stages were scored according to standard criteria. There were 10 male subjects and 7 females, aged 24–66 years (mean 47.44). A sex- and age-matched control group of healthy subjects was used for comparison. There was a reduction of rapid eye movement (REM) sleep in 12 (70.58%), increased REM latency in 9 (52.94%), increased obstructive sleep apnea-index in 14 (82.35%), absent REM density (REM density was calculated as the total number of 3-s miniepochs of REM sleep with at least 1 REM per minute) in 13 (76.47%), and markedly reduced REM density in 4 (23.52%). There was an indirect correlation according to the SARA scale and the REM density decrease (r = − 0.6; P = < 0.001); and with a disease progression correlating with a reduction in the REM density (r = − 0.52, P = 0.03). In SCA2, changes occur mainly REM sleep. The absence/decrease of REM sleep density, even in oligosymptomatic patients, and the correlation of this finding with disease time and with the SARA scale were the main findings of the study.

Keywords

SCA SCA2 Spinocerebellar ataxia Spinocerebellar ataxia 2 Sleep disorders REM sleep disorder REM density Polysomnography 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Marcoglis RL. Dominant spinocerebellar ataxias: a molecular approach to classification, diagnosis, pathogenesis and the future. Expert Rev Mol Diagn. 2003;3(6):715–32.CrossRefGoogle Scholar
  2. 2.
    Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9:885–94.CrossRefGoogle Scholar
  3. 3.
    Deppont C, Donatello S, Rai M, Wang FC, Manto M, Simonmis N, et al. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43). Neurol Genet. 2016;2:1–6.Google Scholar
  4. 4.
    Didonna A, Opal P. Advances in sequencing technologies for understanding hereditary ataxias. JAMA Neurol. 2016;17:1–6.Google Scholar
  5. 5.
    Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14(3):269–76.  https://doi.org/10.1038/ng1196-269.CrossRefGoogle Scholar
  6. 6.
    Machado de Castilhos RM, Furtado GF, Gheno TC, Schaeffer P, Russo A, Barsottini O, et al. Spinocerebellar ataxias in Brazil—frequencies and modulating effects of related genes on behalf of Rede Neurogenetica. Cerebellum. 2014;13(1):17–28.  https://doi.org/10.1007/s12311-013-0510-y.CrossRefGoogle Scholar
  7. 7.
    Trott A, Jardim LB, Ludwig HT, Saute JA, Artigalás O, Kieling C, et al. Spinocerebellar ataxias in 114 Brazilian families: Clinical and molecular findings [3]. Clin Genet. 2006;70(2):173–6.  https://doi.org/10.1111/j.1399-0004.2006.00656.x.CrossRefGoogle Scholar
  8. 8.
    Cintra VP, Lourenço CM, Marques SE, De Oliveira LM, Tumas V, Marques W. Mutational screening of 320 Brazilian patients with autosomal dominant spinocerebellar ataxia. J Neurol Sci. 2014;347(1–2):375–9.  https://doi.org/10.1016/j.jns.2014.10.036.CrossRefGoogle Scholar
  9. 9.
    Orosco G, Estrada R, Perry TL, Araña J, Fernandez R, Gonzalez-Quevedo A, et al. Dominantly inherited olivopontocerebellar atrophy from Eastern Cuba Clinical, Neuropathological, and Biochemical Findings. J Neurol Sci. 1989;93(1):37–50.CrossRefGoogle Scholar
  10. 10.
    Velázquez-Pérez L, Voss U, Rodríguez-Labrada R, Auburger G, Canales Ochoa N, Sánchez Cruz G, et al. Sleep disorders in spinocerebellar ataxia type 2 patients. Neurodegener Dis. 2011;8(6):447–54.  https://doi.org/10.1159/000324374.CrossRefGoogle Scholar
  11. 11.
    Velázquez-Pérez L. An insight into the natural history of spinocerebellar ataxias. Lancet Neurol. 2015;14(11):1067–9.  https://doi.org/10.1016/S1474-4422(15)00218-5.CrossRefGoogle Scholar
  12. 12.
    Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, Montero JM, Sánchez-Cruz G, Aquilera-Rodríquez R, et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. Lancet Neurol. 2014;13(5):482–9.  https://doi.org/10.1016/S1474-4422(14)70027-4.CrossRefGoogle Scholar
  13. 13.
    Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol. 1999;97(3):306–10.  https://doi.org/10.1007/s004010050989.CrossRefGoogle Scholar
  14. 14.
    Cocozza S, Sacc F, Cervo A, Marsili A, Russo CV, Giorgio SM, et al. Modifications of resting state networks in spinocerebellar ataxia type 2. Mov Disrod. 2015;30:1382–90.CrossRefGoogle Scholar
  15. 15.
    Teive HA, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC, et al. Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics. 2012;67(5):443–9.CrossRefGoogle Scholar
  16. 16.
    Gaalen J, Van Giunti P, Van de Warrenburg BP. Movement disorders in spinocerebellar ataxias. Mov Disord. 2011;26(5):792–800.CrossRefGoogle Scholar
  17. 17.
    Shakkottai VF, Fogel BL. Clinical neurogenetics: autosomal dominant spinocerebellar ataxia. Neurol Clin. 2013;31(4):987–1007.CrossRefGoogle Scholar
  18. 18.
    D’ Abreu A, França M, Conz L, Friedman JH, Nucci AM, Cendes F, et al. Sleep symptoms and their clinical correlates in Machado-Joseph disease. Acta Neurol Scand. 2009;119:277–80.CrossRefGoogle Scholar
  19. 19.
    Rueda AD, Pedroso JL, Truksinas E, Prado GF, Coelho FM, Barsottini OG. Polysomnography findings in spinocerebellar ataxia type 6. J Sleep Res. 2016.  https://doi.org/10.1111/jsr.12439.
  20. 20.
    Raggi A, Ferri R. Sleep disorders in neurodegenerative diseases. Eur J Neurol. 2010;17(11):1326–38.CrossRefGoogle Scholar
  21. 21.
    Moro A, Munhoz RP, Moscovich M, Arruda WO, Raskin S, Silveria-Moryama L, et al. Nonmotor symptoms in patients with spinocerebellar ataxia type 10. Cerebellum. 2017;6.  https://doi.org/10.1007/s12311-017-0869-2.
  22. 22.
    Postuma RB, Arnulf I, Hogl B, Iranzo A, Miyamoto T, Dauvilliers Y, et al. A single-question screen for rapid eye movement sleep behavior disorder: a multicenter validation study. Mov Disord. 2012;27(7):913–6.  https://doi.org/10.1002/mds.25037.CrossRefGoogle Scholar
  23. 23.
    Johns MW. A new method for measuring daytime sleepness: the Epworth sleepness scale. Sleep. 1991;14:540–5.CrossRefGoogle Scholar
  24. 24.
    Schmitz-Hü T, Tezenas Du Montcel S, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia development of a new clinical scale. Neurology. 2006;66:1717–20.CrossRefGoogle Scholar
  25. 25.
    American Academy of Sleep Medicine. The manual for the scoring o sleep and associated events:rules, Terminology and technical specifications; 2007.Google Scholar
  26. 26.
    American Academy of Sleep Medicine. The manual for the scoring o sleep and associated events: rules, Terminology and Technical Specifications, version 2.3, 2016.Google Scholar
  27. 27.
    Duce B, Rego C, Milosavljevic J, Hukins C. The AASM recommended and acceptable EEG montages are comparable for the staging of sleep and scoring of EEG arousals. J Clin Sleep Med. 2014;10(7):803–9.  https://doi.org/10.5664/jcsm.3880.Google Scholar
  28. 28.
    Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM manual for the scoring of sleep and associated events. J Clin Sleep Med. 2012;8(5):597–619.  https://doi.org/10.5664/jcsm.2172.Google Scholar
  29. 29.
    Tuin I, Voss U, Kang JS, Kessler K, Rüb U, Nolte D, et al. Stages of sleep pathology in spinocerebellar ataxia type 2 (SCA2). Neurology. 2006;67(11):1966–72.  https://doi.org/10.1212/01.wnl.0000247054.90322.14.CrossRefGoogle Scholar
  30. 30.
    Boesch SM, Frauscher B, Brandauer E, Wenning GK, Högl B, Poewe W. Disturbance of rapid eye movement sleep in spinocerebellar ataxia type 2. Mov Disord. 2006;21(10):1751–4.  https://doi.org/10.1002/mds.21036.CrossRefGoogle Scholar
  31. 31.
    American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien: American Academy of Sleep Medicine; 2014.Google Scholar
  32. 32.
    Geiner S, Horn AKE, Wadia NH, Sakai H, Büttner-Ennever JA. The neuroanatomical basis of slow saccades in spinocerebellar ataxia type 2 (Wadia-subtype). Prog Brain Res. 2008;171:575–81.  https://doi.org/10.1016/S0079-6123(08)00683-3.CrossRefGoogle Scholar
  33. 33.
    Rüb U, Bürk K, Schöls L, Brunt ER, de Vos RA, Diaz GO, et al. Damage to the reticulotegmental nucleus of the pons in spinocerebellar ataxia type 1, 2, and 3. Neurology. 2004;63(7):1258–63.CrossRefGoogle Scholar
  34. 34.
    Gadea-Ciria M, Fuentes J. Analysis of phasic activities in the lateral rectus muscle of the eyes (PALRE) during paradoxical sleep in chronic cerebellectomized cats. Brain Res. 1976;111(2):416–21.  https://doi.org/10.1016/0006-8993(76)90787-3.CrossRefGoogle Scholar
  35. 35.
    Jung BC, Choi SI, Du AX, Cuzzocreo JL, Ying HS, Landman BA, et al. MRI shows a region-specific pattern of atrophy in spinocerebellar ataxia type 2. Cerebellum. 2012;11(1):272–9.  https://doi.org/10.1007/s12311-011-0308-8.CrossRefGoogle Scholar
  36. 36.
    Ilg W, Fleszar Z, Schatton C, Hengel H, Harmuth F, Bauer P, et al. Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity. Mov Disord. 2016;31(12):1891–900.  https://doi.org/10.1002/mds.26835.CrossRefGoogle Scholar
  37. 37.
    Pedroso JL, Braga-Neto P, Felicio AC, Aquino CHC, Prado LBF, Prado GF, et al. Sleep disorders in cerebellar ataxias. Arq Neuropsiquiatr. 2011;69:253–7.CrossRefGoogle Scholar
  38. 38.
    Schroeder LA, Rufra O, Sauvageot N, Fays F, Pieri V, Diederich NJ. Reduced rapid eye movement density in Parkinson disease: a polysomnography-based case-control study. Sleep. 2016;39(12):2133–9.CrossRefGoogle Scholar
  39. 39.
    Friedman JH, Fernandez HH, Sudarsky LR. REM behavior disorder and excessive daytime somnolence in Machado-Joseph disease (SCA-3). Mov Disord. 2003;18:1520–2.CrossRefGoogle Scholar
  40. 40.
    Miller TM, Layzer RB. Muscle cramps. Muscle Nerve. 2005;32(4):431–42.  https://doi.org/10.1002/mus.20341.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alessandra Zanatta
    • 1
    Email author
  • Carlos Henrique Ferreira Camargo
    • 2
  • Francisco Manoel Branco Germiniani
    • 1
  • Salmo Raskin
    • 3
  • Ana Chrystina de Souza Crippa
    • 4
  • Hélio Afonso Ghizoni Teive
    • 1
  1. 1.Movement Disorders Unit, Neurology Service, Hospital de ClínicasFederal University of ParanaCuritibaBrazil
  2. 2.Neurology Service, Hospital Universitário Regional dos Campos GeraisState University of Ponta GrossaPonta GrossaBrazil
  3. 3.Advanced Molecular Research Center, Center for Biological and Health SciencesCatholic University of ParanaCuritibaBrazil
  4. 4.Epilepsy and Sleep Disorders Unit, Hospital de ClínicasFederal University of ParanaCuritibaBrazil

Personalised recommendations