Advertisement

The Cerebellum

, Volume 18, Issue 2, pp 266–286 | Cite as

Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications

  • Martin BarešEmail author
  • Richard Apps
  • Laura Avanzino
  • Assaf Breska
  • Egidio D’Angelo
  • Pavel Filip
  • Marcus Gerwig
  • Richard B. Ivry
  • Charlotte L. Lawrenson
  • Elan D. Louis
  • Nicholas A. Lusk
  • Mario Manto
  • Warren H. Meck
  • Hiroshi Mitoma
  • Elijah A. Petter
Consensus paper

Abstract

Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.

The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson’s disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.

The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.

Keywords

Cerebellum Timing Consensus Temporal processing Movement Climbing fiber 

Notes

Funding

This work was supported by a grant from the EU H2020 Marie Skłodowska RISE project #691110 (MICROBRADAM); National Institute of Health (NS092079); European Union grant Human Brain Project (HBP-604102).

Compliance with Ethical Standards

Conflict of Interest

There are no potential conflicts of interests regarding this paper and no financial or personal relationships that might bias this work.

References

  1. 1.
    Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015;14(2):197–220.Google Scholar
  2. 2.
    Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.Google Scholar
  3. 3.
    Mariën P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410.Google Scholar
  4. 4.
    Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2017;16(2):552–76.Google Scholar
  5. 5.
    Watson PJ. Nonmotor functions of cerebellum. Psychol Bull. 1978;85(5):944–67.Google Scholar
  6. 6.
    Ivry RB, Keele SW. Timing functions of cerebellum. J Cogn Neurosci. 1989;1(2):136–52.Google Scholar
  7. 7.
    Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.Google Scholar
  8. 8.
    Bengtsson SL, Ehrsson HH, Forssberg H, Ullén F. Effector-independent voluntary timing: behavioural and neuroimaging evidence. Eur J Neurosci. 2005;22(12):3255–65.Google Scholar
  9. 9.
    Coull JT, Nobre AC. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci. 1998;18(18):7426–35.Google Scholar
  10. 10.
    Toda K, Lusk NA, Watson GDR, et al. Nigrotectal stimulation stops interval timing in mice. Curr Biol. 2017;27(24):3763–70.Google Scholar
  11. 11.
    Merchant H, Pérez O, Zarco W, Gámez J. Interval tuning in the primate medial premotor cortex as a general timing mechanism. J Neurosci. 2013;33(21):9082–96.Google Scholar
  12. 12.
    Finnerty GT, Shadlen MN, Jazayeri M, Nobre AC, Buonomano DV. Time in cortical circuits. J Neurosci. 2015;35(41):13912–6.Google Scholar
  13. 13.
    Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13(4):1708–18.Google Scholar
  14. 14.
    Spencer R, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Sci Signal. 2003;300(5624):1437.Google Scholar
  15. 15.
    Breska A, Ivry RB. Taxonomies of timing: where does the cerebellum fit in? Curr Opin Behav Sci. 2016;8:282–8.Google Scholar
  16. 16.
    Coull JT, Nobre AC. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18(2):137–44.Google Scholar
  17. 17.
    Diedrichsen J, Ivry RB, Pressing J. Cerebellar and basal ganglia contributions to interval timing. In: Meck WH, editor. Functional and neural mechanisms of interval timing. Boca Raton: CRC Press; 2003.Google Scholar
  18. 18.
    Franz EA, Ivry RB, Helmuth LL. Reduced timing variability in patients with unilateral cerebellar lesions during bimanual movements. J Cogn Neurosci. 1996;8(2):107–18.Google Scholar
  19. 19.
    Bueti D, Walsh V, Frith C, Rees G. Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci. 2008;20(2):204–14.Google Scholar
  20. 20.
    Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17(14):5528–35.Google Scholar
  21. 21.
    Hove MJ, Fairhurst MT, Kotz SA, Keller PE. Synchronizing with auditory and visual rhythms: an fMRI assessment of modality differences and modality appropriateness. NeuroImage. 2013;67:313–21.Google Scholar
  22. 22.
    Johansson F, Jirenhed D-A, Rasmussen A, Zucca R, Hesslow G. Memory trace and timing mechanism localized to cerebellar Purkinje cells. Proc Natl Acad Sci. 2014;111(41):14930–4.Google Scholar
  23. 23.
    Gerwig M, Kolb FP, Timmann D. The involvement of the human cerebellum in eyeblink conditioning. Cerebellum. 2007;6(1):38–57.Google Scholar
  24. 24.
    Bares M, Lungu OV, Liu T, Waechter T, Gomez CM, Ashe J. The neural substrate of predictive motor timing in spinocerebellar ataxia. Cerebellum. 2011;10(2):233–44.Google Scholar
  25. 25.
    Spencer RMC, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and not continuous timed movements: an fMRI study. NeuroImage. 2007;36(2):378–87.Google Scholar
  26. 26.
    Tregellas JR, Davalos DB, Rojas DC. Effect of task difficulty on the functional anatomy of temporal processing. NeuroImage. 2006;32(1):307–15.Google Scholar
  27. 27.
    Mathiak K, Hertrich I, Grodd W, Ackermann H. Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of nonverbal auditory memory. NeuroImage. 2004;21(1):154–62.Google Scholar
  28. 28.
    Ackermann H, Gräber S, Hertrich I, Daum I. Cerebellar contributions to the perception of temporal cues within the speech and nonspeech domain. Brain Lang. 1999;67(3):228–41.Google Scholar
  29. 29.
    Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci. 2010;107(25):11597–601.Google Scholar
  30. 30.
    Teki S, Grube M, Kumar S, Griffiths TD. Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci. 2011;31(10):3805–12.Google Scholar
  31. 31.
    Bueti D, Bahrami B, Walsh V, Rees G. Encoding of temporal probabilities in the human brain. J Neurosci. 2010;30(12):4343–52.Google Scholar
  32. 32.
    Niemi P, Näätänen R. Foreperiod and simple reaction time. Psychol Bull. 1981;89(1):133.Google Scholar
  33. 33.
    Trillenberg P, Verleger R, Teetzmann A, Wascher E, Wessel K. On the role of the cerebellum in exploiting temporal contingencies: evidence from response times and preparatory EEG potentials in patients with cerebellar atrophy. Neuropsychologia. 2004;42(6):754–63.Google Scholar
  34. 34.
    Henry MJ, Herrmann B, Obleser J. Entrained neural oscillations in multiple frequency bands comodulate behavior. Proc Natl Acad Sci. 2014;111(41):14935–40.Google Scholar
  35. 35.
    Breska A, Deouell LY. Automatic bias of temporal expectations following temporally regular input independently of high-level temporal expectation. J Cogn Neurosci. 2014;26(7):1555–71.Google Scholar
  36. 36.
    Geiser E, Zaehle T, Jancke L, Meyer M. The neural correlate of speech rhythm as evidenced by metrical speech processing. J Cogn Neurosci. 2008;20(3):541–52.Google Scholar
  37. 37.
    Grahn JA, Rowe JB. Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb Cortex. 2012;23(4):913–21.Google Scholar
  38. 38.
    Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci. 2002;978(1):302–17.Google Scholar
  39. 39.
    Teki S, Grube M, Griffiths TD. A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Front Integr Neurosci. 2012;5:90.Google Scholar
  40. 40.
    Lakatos P, Musacchia G, O’Connel MN, Falchier AY, Javitt DC, Schroeder CE. The spectrotemporal filter mechanism of auditory selective attention. Neuron. 2013;77(4):750–61.Google Scholar
  41. 41.
    Jones MR. Attending to sound patterns and the role of entrainment. In: Nobre AC, Coull JT, editors. Attention and time. Oxford: Oxford University Press; 2010. p. 317–30.Google Scholar
  42. 42.
    Schroeder CE, Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 2009;32(1):9–18.Google Scholar
  43. 43.
    Grahn JA, Brett M. Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex. 2009;45(1):54–61.Google Scholar
  44. 44.
    Breska A, Deouell LY. Neural mechanisms of rhythm-based temporal prediction: delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLoS Biol. 2017;15(2):e2001665.Google Scholar
  45. 45.
    Breska A, Deouell LY. When synchronizing to rhythms is not a good thing: modulations of preparatory and post-target neural activity when shifting attention away from on-beat times of a distracting rhythm. J Neurosci. 2016;36(27):7154–66.Google Scholar
  46. 46.
    Ekerot CF. Climbing fibres—a key to cerebellar function. J Physiol. 1999;516(Pt 3):629.Google Scholar
  47. 47.
    Llinas R, Walton K, Hillman DE, Sotelo C. Inferior olive: its role in motor learing. Science. 1975;190(4220):1230–1.Google Scholar
  48. 48.
    Rondi-Reig L, Delhaye-Bouchaud N, Mariani J, Caston J. Role of the inferior olivary complex in motor skills and motor learning in the adult rat. Neuroscience. 1997;77(4):955–63.Google Scholar
  49. 49.
    Horn KM, Deep A, Gibson AR. Progressive limb ataxia following inferior olive lesions. J Physiol. 2013;591(Pt 22):5475–89.Google Scholar
  50. 50.
    Wilson WC, Magoun HW. The functional significance of the inferior olive in the cat. J Comp Neurol. 1945;83(1):69–77.Google Scholar
  51. 51.
    King RB. The olivo-cerebella system; the effect of interolivary lesions on muscle tone in the trunk and limb girdles. J Comp Neurol. 1948;89(3):207–23.Google Scholar
  52. 52.
    Eccles JC, Llinas R, Sasaki K. The excitatory synaptic action of climbing fibres on the Purkinje cells of cerebellum. J Physiol. 1966;182(2):268–96.Google Scholar
  53. 53.
    Crepel F, Mariani J, Delhaye-Bouchaud N. Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol. 1976;7(6):567–78.Google Scholar
  54. 54.
    Crepel F, Delhaye-Bouchaud N, Dupont JL. Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res. 1981;227(1):59–71.Google Scholar
  55. 55.
    Apps R, Atkins MJ, Garwicz M. Gating of cutaneous input to cerebellar climbing fibres during a reaching task in the cat. J Physiol. 1997;502(Pt 1):203–14.Google Scholar
  56. 56.
    Apps R. Movement-related gating of climbing fibre input to cerebellar cortical zones. Prog Neurobiol. 1999;57(5):537–62.Google Scholar
  57. 57.
    Apps R, Hartell NA, Armstrong DM. Step phase-related excitability changes in spino-olivocerebellar paths to the c1 and c3 zones in cat cerebellum. J Physiol. 1995;483(Pt 3):687–702.Google Scholar
  58. 58.
    Lawrenson CL, Watson TC, Apps R. Transmission of predictable sensory signals to the cerebellum via climbing fiber pathways is gated during exploratory behavior. J Neurosci. 2016;36(30):7841–51.Google Scholar
  59. 59.
    Lidierth M, Apps R. Gating in the spino-olivocerebellar pathways to the c1 zone of the cerebellar cortex during locomotion in the cat. J Physiol. 1990;430:453–69.Google Scholar
  60. 60.
    Apps R, Lidierth M, Armstrong DM. Locomotion-related variations in excitability of spino-olivocerebellar paths to cat cerebellar cortical c2 zone. J Physiol. 1990;424:487–512.Google Scholar
  61. 61.
    Ekerot CF, Larson B. The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp Brain Res. 1979;36(2):201–17.Google Scholar
  62. 62.
    Tsukahara N, Toyama K, Kosaka K. Electrical activity of red nucleus neurones investigated with intracellular microelectrodes. Exp Brain Res. 1967;4(1):18–33.Google Scholar
  63. 63.
    Shapovalov AI. Neuronal organization and synaptic mechanisms of supraspinal motor control in vertebrates. Rev Physiol Biochem Pharmacol. 1975;72:1–54.Google Scholar
  64. 64.
    Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–70.Google Scholar
  65. 65.
    Eccles JC. Circuits in the cerebellar control of movement. Proc Natl Acad Sci U S A. 1967;58(1):336–43.Google Scholar
  66. 66.
    D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits. 2013;6:116.Google Scholar
  67. 67.
    D’Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32(1):30–40.Google Scholar
  68. 68.
    D’Angelo E. Rebuilding cerebellar network computations from cellular neurophysiology. Front Cell Neurosci. 2010;4:131.  https://doi.org/10.3389/fncel.2010.00131.
  69. 69.
    Castellazzi G, Palesi F, Bruno SD, Toosy AT, D’Angelo E, Wheeler-Kingshott CAM. Resting state fMRI during continuous cognitive processing reveals dynamical changes of brain networks involving cerebral cortex and cerebellum. Conference paper. Presented at: The Cerebellum inside out: cells, circuits and functions, Erice, Italy; 2016.Google Scholar
  70. 70.
    D’Angelo E, De Filippi G, Rossi P, Taglietti V. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J Physiol. 1995;484(2):397–413.Google Scholar
  71. 71.
    Chadderton P, Margrie TW, Hausser M. Integration of quanta in cerebellar granule cells during sensory processing. Nature. 2004;428(6985):856–60.Google Scholar
  72. 72.
    Arleo A, Nieus T, Bezzi M, D’Errico A, D’Angelo E, Coenen OJMD. How synaptic release probability shapes neuronal transmission: information-theoretic analysis in a cerebellar granule cell. Neural Comput. 2010;22(8):2031–58.Google Scholar
  73. 73.
    Mapelli L, Pagani M, Garrido JA, D’Angelo E. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front Cell Neurosci. 2015;9:169.  https://doi.org/10.3389/fncel.2015.00169.
  74. 74.
    D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, et al. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K+-dependent mechanism. J Neurosci. 2001;21(3):759–70.Google Scholar
  75. 75.
    Nieus T, Sola E, Mapelli J, Saftenku E, Rossi P, D’Angelo E. LTP regulates burst initiation and frequency at mossy fiber–granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J Neurophysiol. 2006;95(2):686–99.Google Scholar
  76. 76.
    Solinas S, Nieus T, D’Angelo E. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 2010;4.Google Scholar
  77. 77.
    Jörntell H. Cerebellar physiology: links between microcircuitry properties and sensorimotor functions. J Physiol. 2017;595(1):11–27.Google Scholar
  78. 78.
    Goldfarb M, Schoorlemmer J, Williams A, Diwakar S, Wang Q, Huang X, et al. Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron. 2007;55(3):449–63.Google Scholar
  79. 79.
    Dover K, Marra C, Solinas S, Popovic M, Subramaniyam S, Zecevic D, et al. FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon. Nat Commun 2016;7.Google Scholar
  80. 80.
    Diwakar S, Magistretti J, Goldfarb M, Naldi G, D’Angelo E. Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. J Neurophysiol. 2009;101(2):519–32.Google Scholar
  81. 81.
    Ramakrishnan KB, Voges K, De Propris L, De Zeeuw CI, D’Angelo E. Tactile stimulation evokes longlasting potentiation of Purkinje cell discharge in vivo. Front cell Neurosci. 2016;10:36.  https://doi.org/10.3389/fncel.2016.00036.
  82. 82.
    Belluzzi O, Sacchi O, Wanke E. A fast transient outward current in the rat sympathetic neuron studied under voltage-clamp conditions. J Physiol. 1985;358(1):91–108.Google Scholar
  83. 83.
    Dieudonné S. Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol. 1998;510(3):845–66.Google Scholar
  84. 84.
    D’Angelo E, Rossi P, Armano S, Taglietti V. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber–granule cell transmission in rat cerebellum. J Neurophysiol. 1999;81(1):277–87.Google Scholar
  85. 85.
    Mapelli L, Rossi P, Nieus T, D’Angelo E. Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. J Neurophysiol. 2009;101(6):3089–99.Google Scholar
  86. 86.
    Nieus TR, Mapelli L, D’Angelo E. Regulation of output spike patterns by phasic inhibition in cerebellar granule cells. Front Cell Neurosci 2014;8.Google Scholar
  87. 87.
    Cesana E, Pietrajtis K, Bidoret C, Isope P, D’Angelo E, Dieudonné S, et al. Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer. J Neurosci. 2013;33(30):12430–46.Google Scholar
  88. 88.
    Subramaniyam S, Perin P, Locatelli F, Masetto S, Solinas S, D’Angelo E. The mechanisms of late-onset synaptic responses in a realistic model of unipolar brush cells. BMC Neurosci. 2013;14(1):79.Google Scholar
  89. 89.
    Mugnaini E, Di MR, Jaarsma D. The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. Prog Brain Res. 1997;114:131–50.Google Scholar
  90. 90.
    Sgritta M, Locatelli F, Soda T, Prestori F, D’Angelo EU. Hebbian spike-timing dependent plasticity at the cerebellar input stage. J Neurosci. 2017;37(11):2809–23.Google Scholar
  91. 91.
    Garrido MI, Barnes GR, Kumaran D, Maguire EA, Dolan RJ. Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by mismatch computations. NeuroImage. 2015;120:362–70.Google Scholar
  92. 92.
    D’Angelo E, Mapelli L, Casellato C, Garrido JA, Luque N, Monaco J, et al. Distributed circuit plasticity: new clues for the cerebellar mechanisms of learning. Cerebellum. 2016;15(2):139–51.Google Scholar
  93. 93.
    Masoli S, D’Angelo E. Synaptic activation of a detailed Purkinje cell model predicts voltage-dependent control of burst-pause responses in active dendrites. Front Cell Neurosci. 2017;11:278.Google Scholar
  94. 94.
    Gandolfi D, Lombardo P, Mapelli J, Solinas S, D’Angelo E. Theta-frequency resonance at thecerebellum input stage improves spike timing on the millisecond time-scale. Front Neural Circuits. 2013;7:64.  https://doi.org/10.3389/fncir.2013.00064.
  95. 95.
    Pisotta I, Molinari M. Cerebellar contribution to feedforward control of locomotion. Front Hum Neurosci. 2014;8.Google Scholar
  96. 96.
    Medina JF, Nores WL, Ohyama T, Mauk MD. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol. 2000;10(6):717–24.Google Scholar
  97. 97.
    De Zeeuw CI, Yeo CH. Time and tide in cerebellar memory formation. Curr Opin Neurobiol. 2005;15(6):667–74.Google Scholar
  98. 98.
    Jenkinson N, Miall RC. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans. Cerebellum. 2010;9(4):548–55.Google Scholar
  99. 99.
    Colnaghi S, Ramat S, D’Angelo E, Cortese A, Beltrami G, Moglia A, et al. Theta-burst stimulation of the cerebellum interferes with internal representations of sensory-motor information related to eye movements in humans. Cerebellum. 2011;10(4):711–9.Google Scholar
  100. 100.
    Meck WH, Ivry RB (eds). Time in perception and action. Curr Opin Behav Sci. 2016;8:1–290.Google Scholar
  101. 101.
    Johansson F, Hesslow G, Medina JF. Mechanisms for motor timing in the cerebellar cortex. Curr Opin Behav Sci. 2016;8:53–9.Google Scholar
  102. 102.
    Koch G, Oliveri M, Torriero S, Salerno S, Gerfo EL, Caltagirone C. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res. 2007;179(2):291–9.Google Scholar
  103. 103.
    Coull JT, Cheng RK, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 2011;36(1):3–25.Google Scholar
  104. 104.
    Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.Google Scholar
  105. 105.
    Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36:313–36.Google Scholar
  106. 106.
    Allman MJ, Teki S, Griffiths TD, Meck WH. Properties of the internal clock: first-and second-order principles of subjective time. Annu Rev Psychol. 2014;65:743–71.Google Scholar
  107. 107.
    Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73(1):167–80.Google Scholar
  108. 108.
    Heiney SA, Kim J, Augustine GJ, Medina JF. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci. 2014;34(6):2321–30.Google Scholar
  109. 109.
    Jirenhed D-A, Rasmussen A, Johansson F, Hesslow G. Learned response sequences in cerebellar Purkinje cells. Proc Natl Acad Sci U S A. 2017;114(23):6127–32.Google Scholar
  110. 110.
    Wetmore DZ, Jirenhed D-A, Rasmussen A, Johansson F, Schnitzer MJ, Hesslow G. Bidirectional plasticity of Purkinje cells matches temporal features of learning. J Neurosci. 2014;34(5):1731–7.Google Scholar
  111. 111.
    Gallistel CR, Wilkes JT. Minimum description length model selection in associative learning. Curr Opin Behav Sci. 2016;11:8–13.Google Scholar
  112. 112.
    Lusk NA, Petter EA, MacDonald CJ, Meck WH. Cerebellar, hippocampal, and striatal time cells. Curr Opin Behav Sci. 2016;8:186–92.Google Scholar
  113. 113.
    Ohmae S, Uematsu A, Tanaka M. Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. J Neurosci. 2013;33(39):15432–41.Google Scholar
  114. 114.
    Ohmae S, Kunimatsu J, Tanaka M. Cerebellar roles in self-timing for sub-and supra-second intervals. J Neurosci. 2017;37(13):3511–22.Google Scholar
  115. 115.
    Broersen R, Onuki Y, Abdelgabar AR, Owens CB, Picard S, Willems J, et al. Impaired spatio-temporal predictive motor timing associated with spinocerebellar ataxia type 6. PLoS One. 2016;11(8):e0162042.Google Scholar
  116. 116.
    Coull JT, Davranche K, Nazarian B, Vidal F. Functional anatomy of timing differs for production versus prediction of time intervals. Neuropsychologia. 2013;51(2):309–19.Google Scholar
  117. 117.
    Callu D, El Massioui N, Dutrieux G, Brown BL, Doyere V. Cognitive processing impairments in a supra-second temporal discrimination task in rats with cerebellar lesion. Neurobiol Learn Mem. 2009;91(3):250–9.Google Scholar
  118. 118.
    Petter EA, Lusk NA, Hesslow G, Meck WH. Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci Biobehav Rev. 2016;71:739–55.Google Scholar
  119. 119.
    Rasmussen A, Jirenhed D-A. Learning and timing of voluntary blink responses match eyeblink conditioning. Sci Rep. 2017;7(1):3404.Google Scholar
  120. 120.
    Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):355–65.Google Scholar
  121. 121.
    Bareš M, Lungu OV, Husárová I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson’s disease. Cerebellum. 2010;9(1):124–35.Google Scholar
  122. 122.
    Bares M, Husarova I, Lungu OV. Essential tremor, the cerebellum, and motor timing: towards integrating them into one complex entity. Tremor Other Hyperkinet Mov. 2012;2:1–9.Google Scholar
  123. 123.
    Filip P, Lungu OV, Shaw DJ, Kasparek T, Bareš M. The mechanisms of movement control and time estimation in cervical dystonia patients. Neural Plast. 2013;2013:908741.  https://doi.org/10.1155/2013/908741.
  124. 124.
    Lungu OV, Bares M, Liu T, Gomez CM, Cechova I, Ashe J. Trial-to-trial adaptation: parsing out the roles of cerebellum and BG in predictive motor timing. J Cogn Neurosci. 2016;28(7):920–34.Google Scholar
  125. 125.
    Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54.Google Scholar
  126. 126.
    Parker KL, Kim YC, Kelley RM, Nessler AJ, Chen KH, Muller-Ewald VA, et al. Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol Psychiatry. 2017;22(5):647–55.Google Scholar
  127. 127.
    Najafi F, Medina JF. Beyond “all-or-nothing” climbing fibers: graded representation of teaching signals in Purkinje cells. Front Neural Circuits. 2013;7:115.  https://doi.org/10.3389/fncir.2013.00115.
  128. 128.
    Witter L, Rudolph S, Pressler RT, Lahlaf SI, Regehr WG. Purkinje cell collaterals enable output signals from the cerebellar cortex to feed back to Purkinje cells and interneurons. Neuron. 2016;91(2):312–9.Google Scholar
  129. 129.
    Dean P, Porrill J, Ekerot C-F, Jörntell H. The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci. 2010;11(1):30–43.Google Scholar
  130. 130.
    Hausknecht M, Li W-K, Mauk M, Stone P. Machine learning capabilities of a simulated cerebellum. IEEE Trans Neural Netw Learn Syst. 2017;28(3):510–22.Google Scholar
  131. 131.
    Raghavan RT, Prevosto V, Sommer MA. Contribution of cerebellar loops to action timing. Curr Opin Behav Sci. 2016;8:28–34.Google Scholar
  132. 132.
    Hallett M, Shahani BT, Young RR. EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38(12):1163–9.Google Scholar
  133. 133.
    Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.Google Scholar
  134. 134.
    Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40(4):461–535.Google Scholar
  135. 135.
    Manto MU, Hildebrand J, Jacquy J. Shift from hypermetria to hypometria in an aberrant recovery following cerebellar infarction. J Neurol Sci. 1998;157(1):42–51.Google Scholar
  136. 136.
    Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;6(1):10.Google Scholar
  137. 137.
    Hallett M, Marsden CD. Ballistic flexion movements of the human thumb. J Physiol. 1979;294(1):33–50.Google Scholar
  138. 138.
    Hannaford B, Stark L. Roles of the elements of the triphasic control signal. Exp Neurol. 1985;90(3):619–34.Google Scholar
  139. 139.
    Berardelli A, Rothwell JC, Day BL, Kachi T, Marsden CD. Duration of the first agonist EMG burst in ballistic arm movements. Brain Res. 1984;304(1):183–7.Google Scholar
  140. 140.
    Flament D, Shapiro MB, Kempf T, Corcos DM. Time course and temporal order of changes in movement kinematics during learning of fast and accurate elbow flexions. Exp Brain Res. 1999;129(3):441–50.Google Scholar
  141. 141.
    Brooks VB, Kozlovskaya IB, Atkin A, Horvath FE, Uno M. Effects of cooling dentate nucleus on tracking-task performance in monkeys. J Neurophysiol. 1973;36(6):974–95.Google Scholar
  142. 142.
    Wild B, Klockgether T, Dichgans J. Acceleration deficit in patients with cerebellar lesions. A study of kinematic and EMG-parameters in fast wrist movements. Brain Res. 1996;713(1):186–91.Google Scholar
  143. 143.
    Di Lazzaro V, Restuccia D, Nardone R, Leggio MG, Oliviero A, Profice P, et al. Motor cortex changes in a patient with hemicerebellectomy. Electroencephalogr Clin Neurophysiol. 1995;97(5):259–63.Google Scholar
  144. 144.
    Manto M, Godaux E, Jacquy J. Cerebellar hypermetria is larger when the inertial load is artificially increased. Ann Neurol. 1994;35(1):45–52.Google Scholar
  145. 145.
    Manto M, Jacquy J, Hildebrand J, Godaux E. Recovery of hypermetria after a cerebellar stroke occurs as a multistage process. Ann Neurol. 1995;38(3):437–45.Google Scholar
  146. 146.
    Manto M-U, Bosse P. A second mechanism of increase of cerebellar hypermetria in humans. J Physiol. 2003;547(Pt 3):989.Google Scholar
  147. 147.
    Manto M, Godaux E, Jacquy J, Hildebrand J. Cerebellar hypermetria associated with a selective decrease in the rate of rise of antagonist activity. Ann Neurol. 1996;39(2):271–4.Google Scholar
  148. 148.
    Hore J, Wild B, Diener HC. Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol. 1991;65(3):563–71.Google Scholar
  149. 149.
    Manto M, Godaux E, Jacquy J, Hildebrand JG. Analysis of cerebellar dysmetria associated with lithium intoxication. Neurol Res. 1996;18(5):416–24.Google Scholar
  150. 150.
    Therrien AS, Bastian AJ. Cerebellar damage impairs internal predictions for sensory and motor function. Curr Opin Neurobiol. 2015;33:127–33.Google Scholar
  151. 151.
    Manto M, Van Den Braber N, Grimaldi G, Lammertse P. A new myohaptic instrument to assess wrist motion dynamically. Sensors. 2010;10(4):3180–94.Google Scholar
  152. 152.
    Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A, et al. Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul. 2017;10(2):242–50.Google Scholar
  153. 153.
    Grimaldi G, Taib NOB, Manto M, Bodranghien F. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci. 2014;8.Google Scholar
  154. 154.
    Huang Y-Z, Chang Y-S, Hsu M-J, Wong AMK, Chang Y-J. Restoration of central programmed movement pattern by temporal electrical stimulation-assisted training in patients with spinal cerebellar atrophy. Neural Plast. 2015;2015:462182.Google Scholar
  155. 155.
    Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.Google Scholar
  156. 156.
    Timmann D, Watts S, Hore J. Causes of left-right ball inaccuracy in overarm throws made by cerebellar patients. Exp Brain Res. 2000;130(4):441–52.Google Scholar
  157. 157.
    Timmann D, Lee P, Watts S, Hore J. Kinematics of arm joint rotations in cerebellar and unskilled subjects associated with the inability to throw fast. Cerebellum. 2008;7(3):366.Google Scholar
  158. 158.
    Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76(1):492–509.Google Scholar
  159. 159.
    Woodruff-Pakand DS, Steinmetz JE. Past, present, and future of human eyeblink classical conditioning. Eyeblink Classical Conditioning: Volume I: Springer; 2002. p. 1–17.Google Scholar
  160. 160.
    Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N. Classical conditioning after cerebellar lesions in humans. Behav Neurosci. 1993;107(5):748.Google Scholar
  161. 161.
    Topka H, Valls-Solé J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116(4):961–9.Google Scholar
  162. 162.
    Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology. 1996;10(4):443.Google Scholar
  163. 163.
    Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain. 2003;126(1):71–94.Google Scholar
  164. 164.
    Woodruff-Pak DS, Vogel RW, Ewers M, Coffey J, Boyko OB, Lemieux SK. MRI-assessed volume of cerebellum correlates with associative learning. Neurobiol Learn Mem. 2001;76(3):342–57.Google Scholar
  165. 165.
    Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, et al. Correlation of cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical degeneration. Brain Res. 2008;1198:73–84.Google Scholar
  166. 166.
    Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25(15):3919–31.Google Scholar
  167. 167.
    Ramnani N, Toni I, Josephs O, Ashburner J, Passingham RE. Learning-and expectation-related changes in the human brain during motor learning. J Neurophysiol. 2000;84(6):3026–35.Google Scholar
  168. 168.
    Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci U S A. 2008;105(23):8108–13.Google Scholar
  169. 169.
    Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit. Exp Brain Res. 1985;60(1):99–113.Google Scholar
  170. 170.
    Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;10(6):427–55.Google Scholar
  171. 171.
    Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, et al. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162(3):836–51.Google Scholar
  172. 172.
    Papka M, Ivry RB, Woodruff-Pak DS. Selective disruption of eyeblink classical conditioning by concurrent tapping. Neuroreport. 1995;6(11):1493–7.Google Scholar
  173. 173.
    Woodruff-Pak DS, Jaeger ME. Predictors of eyeblink classical conditioning over the adult age span. Psychol Aging. 1998;13(2):193.Google Scholar
  174. 174.
    Boneau CA. The interstimulus interval and the latency of the conditioned eyelid response. J Exp Psychol. 1958;56(6):464.Google Scholar
  175. 175.
    Ebel HC, Prokasy WF. Classical eyelid conditioning as a function of sustained and shifted interstimulus intervals. J Exp Psychol. 1963;65(1):52.Google Scholar
  176. 176.
    McGlinchey-Berroth R, Fortier CB, Cermak LS, Disterhoft JF. Temporal discrimination learning in abstinent chronic alcoholics. Alcohol Clin Exp Res. 2002;26(6):804–11.Google Scholar
  177. 177.
    Koekkoek SKE, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, Ruigrok TJH, et al. Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science. 2003;301(5640):1736–9.Google Scholar
  178. 178.
    Mauk MD, Medina JF, Nores WL, Ohyama T. Cerebellar function: coordination, learning or timing? Curr Biol. 2000;10(14):R522–R5.Google Scholar
  179. 179.
    Attwell PJE, Ivarsson M, Millar L, Yeo CH. Cerebellar mechanisms in eyeblink conditioning. Ann N Y Acad Sci. 2002;978(1):79–92.Google Scholar
  180. 180.
    Bracha V, Zhao L, Wunderlich DA, Morrissy SJ, Bloedel JR. Patients with cerebellar lesions cannot acquire but are able to retain conditioned eyeblink reflexes. Brain. 1997;120(8):1401–13.Google Scholar
  181. 181.
    Gerwig M, Guberina H, Eßer AC, Siebler M, Schoch B, Frings M, et al. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain Res. 2010;212(2):143–51.Google Scholar
  182. 182.
    Kronenbuerger M, Gerwig M, Brol B, Block F, Timmann D. Eyeblink conditioning is impaired in subjects with essential tremor. Brain. 2007;130(6):1538–51.Google Scholar
  183. 183.
    Teo JTH, Van De Warrenburg BPC, Schneider SA, Rothwell JC, Bhatia KP. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia. J Neurol Neurosurg Psychiatry. 2009;80(1):80–3.Google Scholar
  184. 184.
    Smit AE, Van Der Geest JN, Vellema M, Koekkoek SKE, Willemsen R, Govaerts LCP, et al. Savings and extinction of conditioned eyeblink responses in fragile X syndrome. Genes Brain Behav. 2008;7(7):770–7.Google Scholar
  185. 185.
    Gerwig M, Rauschen L, Gaul C, Katsarava Z, Timmann D. Subclinical cerebellar dysfunction in patients with migraine: evidence from eyeblink conditioning. Cephalalgia. 2014;34(11):904–13.Google Scholar
  186. 186.
    Forsyth JK, Bolbecker AR, Mehta CS, Klaunig MJ, Steinmetz JE, O’Donnell BF, et al. Cerebellar-dependent eyeblink conditioning deficits in schizophrenia spectrum disorders. Schizophr Bull. 2010;38(4):751–9.Google Scholar
  187. 187.
    Frings M, Gaertner K, Buderath P, Gerwig M, Christiansen H, Schoch B, et al. Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Exp Brain Res. 2010;201(2):167–76.Google Scholar
  188. 188.
    Yeo CH, Hesslow G. Cerebellum and conditioned reflexes. Trends Cogn Sci. 1998;2(9):322–30.Google Scholar
  189. 189.
    Bracha V. Role of the cerebellum in eyeblink conditioning. Prog Brain Res. 2004;143:331–9.Google Scholar
  190. 190.
    Bolbecker AR, Steinmetz AB, Mehta CS, Forsyth JK, Klaunig MJ, Lazar EK, et al. Exploration of cerebellar-dependent associative learning in schizophrenia: effects of varying and shifting interstimulus interval on eyeblink conditioning. Behav Neurosci. 2011;125(5):687.Google Scholar
  191. 191.
    Chess AC, Green JT. Abnormal topography and altered acquisition of conditioned eyeblink responses in a rodent model of attention-deficit/hyperactivity disorder. Behav Neurosci. 2008;122(1):63.Google Scholar
  192. 192.
    Zuchowski ML, Timmann D, Gerwig M. Acquisition of conditioned eyeblink responses is modulated by cerebellar tDCS. Brain Stimul. 2014;7(4):525–31.Google Scholar
  193. 193.
    Millenson JR, Kehoe EJ, Gormezano I. Classical conditioning of the rabbit’s nictitating membrane response under fixed and mixed CS-US intervals. Learn Motiv. 1977;8(3):351–66.Google Scholar
  194. 194.
    Beyer L, Batsikadze G, Timmann D, Gerwig M. Cerebellar tDCS effects on conditioned eyeblinks usingdifferent electrode placements and stimulation protocols. Front Hum Neurosci. 2017;11:23.  https://doi.org/10.3389/fnhum.2017.00023.
  195. 195.
    Cheeran B, Talelli P, Mori F, Koch G, Suppa A, Edwards M, et al. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol. 2008;586(23):5717–25.Google Scholar
  196. 196.
    Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204.Google Scholar
  197. 197.
    Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880(1–2):191–7.Google Scholar
  198. 198.
    Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with cerebellum. Proc Natl Acad Sci U S A. 2010;107(18):8452–6.Google Scholar
  199. 199.
    Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.Google Scholar
  200. 200.
    Pelzer EA, Hintzen A, Goldau M, Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci. 2013;38(8):3106–14.Google Scholar
  201. 201.
    Milardi D, Arrigo A, Anastasi G, Cacciola A, Marino S, Mormina E, et al. Extensive direct subcortical cerebellum-basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front Neuroanat. 2016:10.Google Scholar
  202. 202.
    Claassen DO, Jones CRG, Yu M, Dirnberger G, Malone T, Parkinson M, et al. Deciphering the impact of cerebellar and basal ganglia dysfunction in accuracy and variability of motor timing. Neuropsychologia. 2013;51(2):267–74.Google Scholar
  203. 203.
    Schwartze M, Keller PE, Kotz SA. Spontaneous, synchronized, and corrective timing behavior in cerebellar lesion patients. Behav Brain Res. 2016;312:285–93.Google Scholar
  204. 204.
    Avanzino L, Pelosin E, Vicario CM, Lagravinese G, Abbruzzese G, Martino D. Time processing andmotor control in movement disorders. Front Hum Neurosci. 2016;10:631.  https://doi.org/10.3389/fnhum.2016.00631.
  205. 205.
    Prudente CN, Hess EJ, Jinnah HA. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience. 2014;260:23–35.Google Scholar
  206. 206.
    Avanzino L, Tinazzi M, Ionta S, Fiorio M. Sensory-motor integration in focal dystonia. Neuropsychologia. 2015;79:288–300.Google Scholar
  207. 207.
    Caligiore D, Helmich RC, Hallett M, Moustafa AA, Timmermann L, Toni I, et al. Parkinson’s disease as a system-level disorder. NPJ Parkinsons Dis. 2016;2:16025.Google Scholar
  208. 208.
    Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(3):696–709.Google Scholar
  209. 209.
    Helmich RC, Janssen MJR, Oyen WJG, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 2011;69(2):269–81.Google Scholar
  210. 210.
    Gao L, Zhang J, Hou Y, Hallett M, Chan P, Wu T. The cerebellum in dual-task performance inParkinson’s disease. Sci Rep. 2017;7:45662.  https://doi.org/10.1038/srep45662.
  211. 211.
    Avanzino L, Abbruzzese G. How does the cerebellum contribute to the pathophysiology of dystonia? Basal Ganglia. 2012;2(4):231–5.Google Scholar
  212. 212.
    Bologna M, Berardelli A. Cerebellum: an explanation for dystonia? Cerebellum Ataxias. 2017;4(1):6.Google Scholar
  213. 213.
    McIntosh GC, Brown SH, Rice RR, Thaut MH. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62(1):22–6.Google Scholar
  214. 214.
    Heremans E, Nieuwboer A, Feys P, Vercruysse S, Vandenberghe W, Sharma N, et al. External cueing improves motor imagery quality in patients with Parkinson disease. Neurorehabil Neural Repair. 2012;26(1):27–35.Google Scholar
  215. 215.
    Baltadjieva R, Giladi N, Gruendlinger L, Peretz C, Hausdorff JM. Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. Eur J Neurosci. 2006;24(6):1815–20.Google Scholar
  216. 216.
    Almeida QJ, Frank JS, Roy EA, Patla AE, Jog MS. Dopaminergic modulation of timing control and variability in the gait of Parkinson’s disease. Mov Disord. 2007;22(12):1735–42.Google Scholar
  217. 217.
    Schwartze M, Kotz SA. Regional interplay for temporal processing in Parkinson’s disease: possibilities and challenges. Front Neurol. 2016;6:270.Google Scholar
  218. 218.
    Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67(6):448–58.Google Scholar
  219. 219.
    Avanzino L, Pelosin E, Martino D, Abbruzzese G. Motor timing deficits in sequential movements in Parkinson disease are related to action planning: a motor imagery study. PLoS One. 2013;8(9):e75454.Google Scholar
  220. 220.
    Pastor MA, Artieda J, Jahanshahi M, Obeso JA. Time estimation and reproduction is abnormal in Parkinson’s disease. Brain. 1992;115(1):211–25.Google Scholar
  221. 221.
    O’Boyle DJ, Freeman JS, Cody FWJ. The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain. 1996;119(1):51–70.Google Scholar
  222. 222.
    Harrington DL, Haaland KY, Hermanowitz N. Temporal processing in the basal ganglia. Neuropsychology. 1998;12(1):3.Google Scholar
  223. 223.
    Jones CRG, Claassen DO, Yu M, Spies JR, Malone T, Dirnberger G, Jahanshahi M, Kubovy M. Modeling accuracy and variability of motor timing in treated and untreated Parkinson’s disease and healthy controls. Front Integr Neurosci. 2011;5:81.  https://doi.org/10.3389/fnint.2011.00081.
  224. 224.
    Elsinger CL, Rao SM, Zimbelman JL, Reynolds NC, Blindauer KA, Hoffmann RG. Neural basis for impaired time reproduction in Parkinson’s disease: an fMRI study. J Int Neuropsychol Soc. 2003;9(7):1088–98.Google Scholar
  225. 225.
    Cerasa A, Hagberg GE, Peppe A, Bianciardi M, Gioia MC, Costa A, et al. Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson’s disease. Brain Res Bull. 2006;71(1):259–69.Google Scholar
  226. 226.
    Jahanshahi M, Jones CRG, Zijlmans J, Katzenschlager R, Lee L, Quinn N, et al. Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain. 2010;133(3):727–45.Google Scholar
  227. 227.
    Assmus A, Marshall JC, Noth J, Zilles K, Fink GR. Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex. Neuroscience. 2005;132(4):923–7.Google Scholar
  228. 228.
    Field DT, Wann JP. Perceiving time to collision activates the sensorimotor cortex. Curr Biol. 2005;15(5):453–8.Google Scholar
  229. 229.
    O’Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.Google Scholar
  230. 230.
    Filip P, Lošák J, Kašpárek T, Vaníček J, Bareš M. Neural network of predictive motor timing in thecontext of gender differences. Neural Plast. 2016;2016:2073454.  https://doi.org/10.1155/2016/2073454.
  231. 231.
    Husárová I, Lungu OV, Mareček R, Mikl M, Gescheidt T, Krupa P, et al. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson’s disease. J Neuroimaging. 2014;24(1):45–53.Google Scholar
  232. 232.
    Husárová I, Mikl M, Lungu OV, Mareček R, Vaníček J, Bareš M. Similar circuits but different connectivity patterns between the cerebellum, basal ganglia, and supplementary motor area in early Parkinson’s disease patients and controls during predictive motor timing. J Neuroimaging. 2013;23(4):452–62.Google Scholar
  233. 233.
    Furuya S, Altenmüller E. Finger-specific loss of independent control of movements in musicians with focal dystonia. Neuroscience. 2013;247:152–63.Google Scholar
  234. 234.
    Jabusch HC, Schneider U, Altenmüller E. Δ9-Tetrahydrocannabinol improves motor control in a patient with musician’s dystonia. Mov Disord. 2004;19(8):990–1.Google Scholar
  235. 235.
    Furuya S, Nitsche MA, Paulus W, Altenmüller E. Surmounting retraining limits in musicians’ dystonia by transcranial stimulation. Ann Neurol. 2014;75(5):700–7.Google Scholar
  236. 236.
    Van Der Steen MC, van Vugt FT, Keller PE, Altenmüller E. Basic timing abilities stay intact in patients with musician’s dystonia. PLoS One. 2014;9(3):e92906.Google Scholar
  237. 237.
    Avanzino L, Bove M, Pelosin E, Ogliastro C, Lagravinese G, Martino D. The cerebellum predicts the temporal consequences of observed motor acts. PLoS One. 2015;10(2):e0116607.Google Scholar
  238. 238.
    Avanzino L, Martino D, Martino I, Pelosin E, Vicario CM, Bove M, et al. Temporal expectation in focal hand dystonia. Brain. 2013;136(2):444–54.Google Scholar
  239. 239.
    Martino D, Lagravinese G, Pelosin E, Chaudhuri RK, Vicario CM, Abbruzzese G, et al. Temporal processing of perceived body movement in cervical dystonia. Mov Disord. 2015;30(7):1005–7.Google Scholar
  240. 240.
    Filip P, Gallea C, Lehéricy S, Bertasi E, Popa T, Mareček R, et al. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Mov Disord. 2017;32(5):757–68.Google Scholar
  241. 241.
    Avanzino L, Ravaschio A, Lagravinese G, Bonassi G, Abbruzzese G, Pelosin E. Adaptation of feedforward movement control is abnormal in patients with cervical dystonia and tremor. Clin Neurophysiol. 2018;129(1):319–26.Google Scholar
  242. 242.
    Louis ED. The primary type of tremor in essential tremor is kinetic rather than postural: cross-sectional observation of tremor phenomenology in 369 cases. Eur J Neurol. 2013;20(4):725–7.Google Scholar
  243. 243.
    Critchley M. Observations on essential (heredofamilial) tremor. Brain. 1949;72(2):113–39.Google Scholar
  244. 244.
    Louis ED, Ottman R, Allen HW. How common is the most common adult movement disorder? Estimates of the prevalence of essential tremor throughout the world. Mov Disord. 1998;13(1):5–10.Google Scholar
  245. 245.
    Louis ED. Non-motor symptoms in essential tremor: a review of the current data and state of the field. Parkinsonism Relat Disord. 2016;22:S115–S8.Google Scholar
  246. 246.
    Passamonti L, Cerasa A, Quattrone A. Neuroimaging of essential tremor: what is the evidence for cerebellar involvement? Tremor Other Hyperkinet Mov (N Y). 2012;2:02-67-421-3.  https://doi.org/10.7916/D8F76B8G.
  247. 247.
    Wilms H, Sievers J, Deuschl G. Animal models of tremor. Mov Disord. 1999;14(4):557–71.Google Scholar
  248. 248.
    Benito-León J, Labiano-Fontcuberta A. Linking essential tremor to the cerebellum: clinical evidence. Cerebellum. 2016;15(3):253–62.Google Scholar
  249. 249.
    Filip P, Lungu OV, Manto M-U, Bareš M. Linking essential tremor to the cerebellum: physiological evidence. Cerebellum. 2016;15(6):774–80.Google Scholar
  250. 250.
    Louis ED. Linking essential tremor to the cerebellum: neuropathological evidence. Cerebellum. 2016;15(3):235–42.Google Scholar
  251. 251.
    Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6(10):755–65.Google Scholar
  252. 252.
    Buhusi CV, Meck WH. Relativity theory and time perception: single or multiple clocks. PLoS One. 2009;4(7):e6268.Google Scholar
  253. 253.
    Wiener M, Turkeltaub P, Coslett HB. The image of time: a voxel-wise meta-analysis. NeuroImage. 2010;49(2):1728–40.Google Scholar
  254. 254.
    Elble RJ, Higgins C, Hughes L. Essential tremor entrains rapid voluntary movements. Exp Neurol. 1994;126(1):138–43.Google Scholar
  255. 255.
    Montgomery EB, Baker KB, Lyons K, Koller WC. Motor initiation and execution in essential tremor and Parkinson’s disease. Mov Disord. 2000;15(3):511–5.Google Scholar
  256. 256.
    Özekmekçi S, Kiziltan G, Vural M, Ertan S, Apaydin H, Erginöz E. Assessment of movement time in patients with essential tremor. J Neurol. 2005;252(8):964–7.Google Scholar
  257. 257.
    Jiménez-Jiménez FJ, Rubio L, Alonso-Navarro H, Calleja M, Pilo-de-la-Fuente B, Plaza-Nieto JF, et al. Impairment of rapid repetitive finger movements and visual reaction time in patients with essential tremor. Eur J Neurol. 2010;17(1):152–9.Google Scholar
  258. 258.
    Duval C, Sadikot AF, Panisset M. Bradykinesia in patients with essential tremor. Brain Res. 2006;1115(1):213–6.Google Scholar
  259. 259.
    Avanzino L, Bove M, Tacchino A, Ruggeri P, Giannini A, Trompetto C, et al. Cerebellar involvement in timing accuracy of rhythmic finger movements in essential tremor. Eur J Neurosci. 2009;30(10):1971–9.Google Scholar
  260. 260.
    Farkas Z, Szirmai I, Kamondi A. Impaired rhythm generation in essential tremor. Mov Disord. 2006;21(8):1196–9.Google Scholar
  261. 261.
    Helmchen C, Hagenow A, Miesner J, Sprenger A, Rambold H, Wenzelburger R, et al. Eye movement abnormalities in essential tremor may indicate cerebellar dysfunction. Brain. 2003;126(6):1319–32.Google Scholar
  262. 262.
    Trillenberg P, Führer J, Sprenger A, Hagenow A, Kömpf D, Wenzelburger R, et al. Eye–hand coordination in essential tremor. Mov Disord. 2006;21(3):373–9.Google Scholar
  263. 263.
    Gitchel GT, Wetzel PA, Baron MS. Slowed saccades and increased square wave jerks in essential tremor. Tremor Other Hyperkinet Mov. 2013;3:tre-03-178-4116-2.  https://doi.org/10.7916/D8251GXN.
  264. 264.
    Brown SH, Cooke JD. Movement-related phasic muscle activation. I. Relations with temporal profile of movement. J Neurophysiol. 1990;63(3):455–64.Google Scholar
  265. 265.
    Britton TC, Thompson PD, Day BL, Rothwell JC, Findley LJ, Marsden CD. Rapid wrist movements in patients with essential tremor: the critical role of the second agonist burst. Brain. 1994;117(1):39–47.Google Scholar
  266. 266.
    Köster B, Deuschl G, Lauk M, Timmer J, Guschlbauer B, Lücking CH. Essential tremor and cerebellar dysfunction: abnormal ballistic movements. J Neurol Neurosurg Psychiatry. 2002;73(4):400–5.Google Scholar
  267. 267.
    Anderson VC, Burchiel KJ, Hart MJ, Berk C, Lou J-S. A randomized comparison of thalamic stimulation and lesion on self-paced finger movement in essential tremor. Neurosci Lett. 2009;462(2):166–70.Google Scholar
  268. 268.
    Braitenberg V. Functional interpretation of cerebellar histology. Nature. 1961;190(4775):539.Google Scholar
  269. 269.
    Molinari M, Leggio MG, Thaut MH. The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerebellum. 2007;6(1):18–23.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Martin Bareš
    • 1
    • 2
    Email author
  • Richard Apps
    • 3
  • Laura Avanzino
    • 4
    • 5
  • Assaf Breska
    • 6
  • Egidio D’Angelo
    • 7
    • 8
  • Pavel Filip
    • 1
  • Marcus Gerwig
    • 9
  • Richard B. Ivry
    • 6
  • Charlotte L. Lawrenson
    • 3
  • Elan D. Louis
    • 10
    • 11
  • Nicholas A. Lusk
    • 12
  • Mario Manto
    • 13
  • Warren H. Meck
    • 12
  • Hiroshi Mitoma
    • 14
  • Elijah A. Petter
    • 12
  1. 1.First Department of Neurology, St. Anne’s University Hospital and Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Neurology, School of MedicineUniversity of MinnesotaMinneapolisUSA
  3. 3.School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
  4. 4.Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze MotorieUniversity of GenoaGenoaItaly
  5. 5.Centre for Parkinson’s Disease and Movement DisordersOspedale Policlinico San MartinoGenoaItaly
  6. 6.Department of Psychology and Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyUSA
  7. 7.Neurophysiology Unit, Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
  8. 8.Brain Connectivity CenterFondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS)PaviaItaly
  9. 9.Department of NeurologyUniversity of Duisburg-EssenDuisburgGermany
  10. 10.Department of Neurology, Yale School of MedicineYale UniversityNew HavenUSA
  11. 11.Department of Chronic Disease Epidemiology, Yale School of Public HealthYale UniversityNew HavenUSA
  12. 12.Department of Psychology and NeuroscienceDuke UniversityDurhamUSA
  13. 13.Department of Neurology, CHU-Charleroi, Charleroi, Belgium -Service des NeurosciencesUMonsMonsBelgium
  14. 14.Medical Education Promotion CenterTokyo Medical UniversityTokyoJapan

Personalised recommendations