The Cerebellum

, Volume 17, Issue 6, pp 747–755 | Cite as

Depressed by Learning—Heterogeneity of the Plasticity Rules at Parallel Fiber Synapses onto Purkinje Cells

  • Aparna Suvrathan
  • Jennifer L. RaymondEmail author


Climbing fiber-driven long-term depression (LTD) of parallel fiber synapses onto cerebellar Purkinje cells has long been investigated as a putative mechanism of motor learning. We recently discovered that the rules governing the induction of LTD at these synapses vary across different regions of the cerebellum. Here, we discuss the design of LTD induction protocols in light of this heterogeneity in plasticity rules. The analytical advantages of the cerebellum provide an opportunity to develop a deeper understanding of how the specific plasticity rules at synapses support the implementation of learning.


Long-term depression Synaptic plasticity Learning Purkinje cell Heterogeneity Oculomotor Associative plasticity Short-term depression 



We are grateful for Jaydev Bhateja for his comments and suggestions.


AS was supported by the Research Institute of the McGill University Health Centre and McGill University as well as by funding from the Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains for Healthy Lives initiative. JR was supported by NIH R01NS072406, R01DC004154 and the Simons Foundation Collaboration on the Global Brain no. 54031.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.Google Scholar
  3. 3.
    Ito M. Neural design of the cerebellar motor control system. Brain Res. 1972;40:81–4.PubMedGoogle Scholar
  4. 4.
    Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar purkinje cells. J Physiol. 1982;324:113–34.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Boyden ES, Katoh A, Raymond JL. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci. 2004;27:581–609.PubMedGoogle Scholar
  7. 7.
    Boyden ES, Katoh A, Pyle JL, Chatila TA, Tsien RW, Raymond JL. Selective engagement of plasticity mechanisms for motor memory storage. Neuron. 2006;51:823–34.PubMedGoogle Scholar
  8. 8.
    Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.CrossRefGoogle Scholar
  9. 9.
    Galliano E, De Zeeuw CI. Questioning the cerebellar doctrine. Prog Brain Res. 2014;210:59–77.PubMedGoogle Scholar
  10. 10.
    Ito M. Cerebellar long-term depression: characterization , signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.Google Scholar
  11. 11.
    Ito M, Yamaguchi K, Nagao S, Yamazaki T. Long-term depression as a model of cerebellar plasticity. Prog Brain Res. 2014;210:1–30.PubMedGoogle Scholar
  12. 12.
    Hirano T, Around LTD. Hypothesis in motor learning. Cerebellum. 2014;13:645–50.PubMedGoogle Scholar
  13. 13.
    Schonewille M, Gao Z, Boele H-J, Veloz MFV, Amerika WE, Simek AAM, et al. Reevaluating the role of LTD in cerebellar motor learning. Neuron. 2011;70:43–50.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Galliano E, Schonewille M, Peter S, Rutteman M, Houtman S, Jaarsma D, et al. Impact of NMDA receptor overexpression on cerebellar purkinje cell activity and motor learning. Eneuro. 2018;5:ENEURO.0270-17.2018.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Inoshita T, Hirano T. Occurrence of long-term depression in the cerebellar flocculus during adaptation of optokinetic response. elife. 2018;7:1–10.Google Scholar
  16. 16.
    Aizenman CD, Linden DJ. Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nat Neurosci. 2000;3:109–11.PubMedGoogle Scholar
  17. 17.
    D’Angelo E. The organization of plasticity in the cerebellar cortex: from synapses to control. Prog Brain Res. 2014;210:31–8.PubMedGoogle Scholar
  18. 18.
    Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886:237–45.PubMedGoogle Scholar
  19. 19.
    Jörntell H. Cerebellar physiology: links between microcircuitry properties and sensorimotor functions. J Physiol. 2017;595:11–27.PubMedGoogle Scholar
  20. 20.
    Khilkevich A, Halverson HE, Canton-Josh JE, Mauk MD. Links between single-trial changes and learning rate in eyelid conditioning. Cerebellum. 2016;15:112–21.PubMedGoogle Scholar
  21. 21.
    Otis TS, Mathews PJ, Lee KH, Maiz J. How do climbing fibers teach? Front Neural Circuits. 2012;6:95.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Popa LS, Hewitt AL, Ebner TJ. Predictive and feedback performance errors are signaled in the simple spike discharge of individual Purkinje cells. J Neurosci. 2012;32:15345–58.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Rasmussen A, Jirenhed D-A, Zucca R, Johansson F, Svensson P, Hesslow G. Number of spikes in climbing fibers determines the direction of cerebellar learning. J Neurosci. 2013;33:13436–40.PubMedGoogle Scholar
  24. 24.
    Titley HK, Heskin-Sweezie R, Broussard DM. The bidirectionality of motor learning in the vestibulo-ocular reflex is a function of cerebellar mGluR1 receptors. J Neurophysiol. 2010;104:3657–66.PubMedGoogle Scholar
  25. 25.
    Wetmore DZ, Jirenhed D-A, Rasmussen A, Johansson F, Schnitzer MJ, Hesslow G. Bidirectional plasticity of Purkinje cells matches temporal features of learning. J Neurosci. 2014;34:1731–7.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Yang Y, Lisberger SG. Interaction of plasticity and circuit organization during the acquisition of cerebellum-dependent motor learning. elife. 2013;2:e01574.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Miles F, Lisberger SG. Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci. 1981;4:273–99.PubMedGoogle Scholar
  28. 28.
    Dean P, Porrill J, Ekerot CF, Jörntell H. The cerebellar microcircuit as an adaptive filter : experimental and computational evidence. Nat Rev Neurosci. 2009;11:30–43.PubMedGoogle Scholar
  29. 29.
    Broussard DM, Titley HK, Antflick J, Hampson DR. Motor learning in the VOR: the cerebellar component. Exp Brain Res. 2011;210:451–63.PubMedGoogle Scholar
  30. 30.
    du Lac S, Raymond JL, Sejnowski TJ. Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci. 1995;409:409–41.Google Scholar
  31. 31.
    Hansel C, de Jeu M, Belmeguenai A, Houtman SH, Buitendijk GHS, Andreev D, et al. alphaCaMKII is essential for cerebellar LTD and motor learning. Neuron. 2006;51:835–43.PubMedPubMedCentralGoogle Scholar
  32. 32.
    De Zeeuw CI, Hansel C, Bian F, Koekkoek SK, Van Alphen AM, Linden DJ, et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron. 1998;20:495–508.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Goossens HHLM, Van Alphen AM, Van Der Steen J, Stahl JS, De Zeeuw CI, Frens MA. Simple spike and complex spike activity of floccular Purkinje cells during the optokinetic reflex in mice lacking cerebellar long-term depression. Neuroscience. 2004;19:687–97.Google Scholar
  34. 34.
    Goossens J, Daniel H, Rancillac A, van Der Steen J, Oberdick J, Crépel F, et al. Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J Neurosci. 2001;21:5813–23.PubMedGoogle Scholar
  35. 35.
    Anzai M, Nagao S. Motor learning in common marmosets: vestibulo-ocular reflex adaptation and its sensitivity to inhibitors of Purkinje cell long-term depression. Neurosci Res. 2014;83:33–42.PubMedGoogle Scholar
  36. 36.
    Le TD, Shirai Y, Okamoto T, Tatsukawa T, Nagao S, Shimizu T, et al. Lipid signaling in cytosolic phospholipase A2 -cyclooxygenase-2 cascade mediates cerebellar long-term depression and motor learning. Proc Natl Acad Sci. 2010;107:3198–203.PubMedGoogle Scholar
  37. 37.
    Katoh A, Kitazawa H, Itohara S, Nagao S. Inhibition of nitric oxide synthesis and gene knockout of neuronal nitric oxide synthase impaired adaptation of mouse optokinetic response eye movements. Learn Mem. 2000;7:220–6.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Katoh A, Yoshida T, Himeshima Y, Mishina M, Hirano T. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor δ2 subunit or Purkinje cells. Eur J Neurosci. 2005;21:1315–26.PubMedGoogle Scholar
  39. 39.
    Kawaguchi S, Hirano T. Gating of long-term depression by Ca 2+ /calmodulin-dependent protein kinase II through enhanced cGMP signalling in cerebellar Purkinje cells. J Physiol. 2013;591:1707–30.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Nguyen-Vu TDB, Kimpo RR, Rinaldi JM, Kohli A, Zeng H, Deisseroth K, et al. Cerebellar Purkinje cell activity drives motor learning. Nat Neurosci. 2013;16:1734–6.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Kimpo RR, Rinaldi JM, Kim CK, Payne HL, Raymond JL. Gating of neural error signals during motor learning. elife. 2014;3:1–23.Google Scholar
  42. 42.
    Gilbert PFC, Thach WT. Purkinje cell activity during motor learning. Brain Res. 1977;128:309–28.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Nagao S. Behavior of floccular Purkinje cells correlated with adaptation of horizontal optokinetic eye movement response in pigmented rabbits. Exp Brain Res. 1988;73:489–97.PubMedGoogle Scholar
  44. 44.
    Wang W, Nakadate K, Masugi-tokita M, Shutoh F, Aziz W, Etsuko T, et al. Distinct cerebellar engrams in short-term and long-term motor learning. Proc Natl Acad Sci. 2014;111:E188–93.PubMedGoogle Scholar
  45. 45.
    Aziz W, Wang W, Kesaf S, Mohamed AA, Fukazawa Y, Shigemoto R. Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning. Proc Natl Acad Sci. 2014;111:E194–202.PubMedGoogle Scholar
  46. 46.
    Alba A. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell. 1994;79:377–88.Google Scholar
  47. 47.
    Welsh JP, Yamaguchi H, Zeng X-H, Kojo M, Nakada Y, Takagi A, et al. Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proc Natl Acad Sci. 2005;102:17166–71.Google Scholar
  48. 48.
    Lisberger SG. Neural basis for motor learning in the vestibuloocular reflex of primates. 3. Computational and behavioral-analysis of the sites of learning. J Neurophysiol. 1994;72:974–98.PubMedGoogle Scholar
  49. 49.
    Ke MC, Guo CC, Raymond JL. Elimination of climbing fiber instructive signals during motor learning. Nat Neurosci. 2009;12:1171–9.Google Scholar
  50. 50.
    Nguyen-Vu TDB, Zhao GQ, Lahiri S, Kimpo RR, Lee H, Ganguli S, et al. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity. elife. 2017;6:1–37.Google Scholar
  51. 51.
    Yamaguchi K, Itohara S, Ito M. Reassessment of long-term depression in cerebellar Purkinje cells in mice carrying mutated GluA2 C terminus. Proc Natl Acad Sci. 2016;113:10192–7.PubMedGoogle Scholar
  52. 52.
    Suvrathan A, Payne HL, Raymond JL. Timing rules for synaptic plasticity matched to behavioral function. Neuron. 2016;92:959–67.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Wadiche JI, Jahr CE. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat Neurosci. 2005;8:1329–34.PubMedGoogle Scholar
  54. 54.
    Mittmann W, Häusser M. Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. J Neurosci. 2007;27:5559–70.PubMedGoogle Scholar
  55. 55.
    Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;44:691–700.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Konnerth A, Dreessen J, Augustine GJ. Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc Natl Acad Sci U S A. 1992;89:7051–5.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Reynolds T, Hartell NA. An evaluation of the synapse specificity of long-term depression induced in rat cerebellar slices. J Physiol. 2000;527(3):563–77.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Belmeguenai A, Botta P, Weber JT, Carta M, De Ruiter M, De Zeeuw CI, et al. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse. J Neurophysiol. 2008;100:3167–74.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Schreurs BG, Alkon DL. Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning. Brain Res. 1993;631:235–40.PubMedGoogle Scholar
  60. 60.
    Wang SS, Denk W, Häusser M. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci. 2000;3:1266–73.PubMedGoogle Scholar
  61. 61.
    Ekerot CF, Kano M. Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res. 1985;342:357–60.PubMedGoogle Scholar
  62. 62.
    Ekerot C-F, Kano M. Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neurosci Res. 1989;6:264–8.PubMedGoogle Scholar
  63. 63.
    Chen C, Thompson RF. Temporal specificity of long-term depression in parallel fiber-Purkinje synapses in rat cerebellar slice. Learn Mem. 1995;2:185–98.PubMedGoogle Scholar
  64. 64.
    Tanaka K, Augustine GJ. A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron. 2008;59:608–20.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Piochon C, Levenes C, Ohtsuki G, Hansel C. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum. J Neurosci. 2010;30:15330–5.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Safo P, Regehr WG. Timing dependence of the induction of cerebellar LTD. Neuropharmacology. 2008;54:213–8.PubMedGoogle Scholar
  67. 67.
    Safo PK, Regehr WG. Endocannabinoids control the induction of cerebellar LTD. Neuron. 2005;48:647–59.PubMedGoogle Scholar
  68. 68.
    Schreurs BG, Oh MM, Alkon DL. Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice. J Neurophysiol. 1996;75:1051–60.PubMedGoogle Scholar
  69. 69.
    Schreurs BG, Tomsic D, Gusev PA, Alkon DL. Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit’s nictitating membrane response. J Neurophysiol. 1997;77:86–92.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Carey MR, Myoga MH, McDaniels KR, Marsicano G, Lutz B, Mackie K, et al. Presynaptic CB1 receptors regulate synaptic plasticity at cerebellar parallel fiber synapses. J Neurophysiol. 2011;105:958–63.PubMedGoogle Scholar
  71. 71.
    Jörntell H, Ekerot CF. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron. 2002;34:797–806.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Crepel F and, Jaillard D, Paris-sud U. Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. J Physiol 1991;123–141, 432.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Mark MD, Krause M, Boele HJ, Kruse W, Pollok S, Kuner T, et al. Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity. J Neurosci. 2015;35:8882–95.PubMedGoogle Scholar
  74. 74.
    Kano M, Kato M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature. 1987;325:276–9.PubMedGoogle Scholar
  75. 75.
    Linden DJ. A late phase of LTD in cultured cerebellar Purkinje cells requires persistent dynamin-mediated endocytosis. J Neurophysiol. 2012;107:448–54.PubMedGoogle Scholar
  76. 76.
    Karachot L, Kado RT, Ito M. Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neurosci Res. 1994;21:161–8.PubMedGoogle Scholar
  77. 77.
    Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, et al. Cerebellar LTD and pattern recognition by Purkinje cells. Neuron. 2007;54:121–36.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Sakurai M. Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J Physiol. 1987;394:463–80.PubMedPubMedCentralGoogle Scholar
  79. 79.
    McConnell MJ, Huang YH, Datwani A, Shatz CJ. H2-K(b) and H2-D(b) regulate cerebellar long-term depression and limit motor learning. Proc Natl Acad Sci U S A. 2009;106:6784–9.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Raymond JL, Lisberger SG. Neural learning rules for the vestibulo-ocular reflex. J Neurosci. 1998;18:9112–29.PubMedGoogle Scholar
  81. 81.
    Stone LS, Lisberger SG. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes. J Neurophysiol. 1990;63:1262–75.Google Scholar
  82. 82.
    Cerminara NL, Lang EJ, Sillitoe RV, Apps R. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci. 2015;16:79–93.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Kano M, Hashimoto K, Tabata T. Type-1 metabotropic glutamate receptor in cerebellar Purkinje cells: a key molecule responsible for long-term depression, endocannabinoid signalling and synapse elimination. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:2173–86.Google Scholar
  84. 84.
    Jin Y, Kim SJ, Kim J, Worley PF, Linden DJ. Long-term depression of mGluR1 signaling. Neuron. 2007;55:277–87.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Brasnjo G, Otis TS. Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron. 2001;31:607–16.PubMedGoogle Scholar
  86. 86.
    Meera P, Pulst S, Otis T. A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2. elife. 2017;6:1–14.Google Scholar
  87. 87.
    Hartell NA. Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron. 1996;16:601–10.PubMedGoogle Scholar
  88. 88.
    Chadderton P, Margrie TW, Häusser M. Integration of quanta in cerebellar granule cells during sensory processing. Nature. 2004;428:856–60.PubMedGoogle Scholar
  89. 89.
    Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Häusser M. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature. 2007;450:1245–8.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Jorntell H, Ekerot C-F. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J Neurosci. 2006;26:11786–97.PubMedGoogle Scholar
  91. 91.
    Barmack NH, Yakhnitsa V. Functions of interneurons in mouse cerebellum. J Neurosci. 2008;28:1140–52.PubMedGoogle Scholar
  92. 92.
    Giovannucci A, Badura A, Deverett B, Najafi F, Pereira TD, Gao Z, et al. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nat Neurosci. 2017;20:727–34.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Wagner MJ, Hyun Kim T, Savall J, Schnitzer MJ, Luo L. Cerebellar granule cells encode the expectation of reward. Nat Lett. 2017:1–18.Google Scholar
  94. 94.
    Ozden I, Dombeck DA, Hoogland TM, Tank DW, Wang SS-H. Widespread state-dependent shifts in cerebellar activity in locomoting mice. PLoS One. 2012;7:e42650.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Billings G, Piasini E, Lorincz A, Nusser Z, Silver RA. Network structure within the cerebellar input layer enables lossless sparse encoding. Neuron. 2014;83:960–74.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Sawtell NB. Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron. 2010;66:573–84.PubMedGoogle Scholar
  97. 97.
    Chabrol FP, Arenz A, Wiechert MT, Margrie TW, DiGregorio DA. Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. Nat Neurosci. 2015;18:718–27.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Ishikawa T, Shimuta M, Häusser M. Multimodal sensory integration in single cerebellar granule cells in vivo. elife. 2015;4:1–10.Google Scholar
  99. 99.
    Badura A, De Zeeuw CI. Cerebellar granule cells: dense, rich and evolving representations. Curr Biol. 2017;27:R415–8.PubMedGoogle Scholar
  100. 100.
    Knogler LD, Markov DA, Dragomir EI, Štih V, Portugues R. Sensorimotor representations in cerebellar granule cells in larval zebrafish are dense, spatially organized, and non-temporally patterned. Curr Biol. 2017;27:1288–302.PubMedGoogle Scholar
  101. 101.
    Linden DJ. Input-specific induction of cerebellar long-term depression does not require presynaptic alteration. Learn Mem. 1994;1:121–8.PubMedGoogle Scholar
  102. 102.
    Wang SS, Khiroug L, Augustine GJ. Quantification of spread of cerebellar long-term depression with chemical two-photon uncaging of glutamate. Proc Natl Acad Sci U S A. 2000;97:8635–40.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Hartell NA. Parallel fiber plasticity. Cerebellum. 2002;1:3–18.PubMedGoogle Scholar
  104. 104.
    Hartell NA. Receptors, second messengers and protein kinases required for heterosynaptic cerebellar long-term depression. Neuropharmacology. 2000;40:148–61.Google Scholar
  105. 105.
    Powell K, Mathy A, Duguid I, Häusser M. Synaptic representation of locomotion in single cerebellar granule cells. elife. 2015;4:1–18.Google Scholar
  106. 106.
    Hartmann MJ, Bower JM. Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. J Neurosci. 2001;21:3549–63.PubMedGoogle Scholar
  107. 107.
    van Beugen BJ, Gao Z, Boele H-J, Hoebeek F, De Zeeuw CI. High frequency burst firing of granule cells ensures transmission at the parallel Fiber to Purkinje cell synapse at the cost of temporal coding. Front Neural Circuits. 2013;7:1–12.Google Scholar
  108. 108.
    Llinás R, Nicholson C, Llinas R. Reversal properties of climbing fiber potential in cat Purkinje cells: an example of a distributed synapse. J Neurophysiol. 1976;39:311–23.PubMedGoogle Scholar
  109. 109.
    Eccles J, Llinás RR, Sasaki K. Excitation of cerebellar Purkinje cells by climbing fibers. Nature. 1964;201:1212–3.Google Scholar
  110. 110.
    De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SKE, Ruigrok TJH. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;2236:391–400.Google Scholar
  111. 111.
    Perkel DJ, Hestrin S, Sah P, Nicoll RA. Excitatory synaptic currents in Purkinje cells. Proc R Soc Lond B. 1990;100:116–21.Google Scholar
  112. 112.
    Konnerth A, Llanot I, Armstrongt CM. Synaptic currents in cerebellar Purkinje cells. Neurobiology. 1990;87:2662–5.Google Scholar
  113. 113.
    Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C. The making of a complex spike: ionic composition and plasticity. Ann N Y Acad Sci. 2002;978:359–90.PubMedGoogle Scholar
  114. 114.
    Piochon C, Titley HK, Simmons DH, Grasselli G, Elgersma Y, Hansel C. Calcium threshold shift enables frequency-independent control of plasticity by an instructive signal. Proc Natl Acad Sci. 2016;113:13221–6.PubMedGoogle Scholar
  115. 115.
    Eilers J, Takechi H, Fich EA, Augustine GJ, Konnerth A. Local dendritic Ca2 + signaling induces cerebellar long-term depression. Learn Mem. 1997;3:159–68.Google Scholar
  116. 116.
    Finch EA, Augustine GJ. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature. 1998;396:753–6.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Mathy A, Ho SSN, Davie JT, Duguid IC, Clark BA, Häusser M. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron. 2009;62:388–99.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Yang Y, Lisberger SG. Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature. 2014;510:529–32.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Kimpo RR, Boyden ES, Katoh A, Ke MC, Raymond JL. Distinct patterns of stimulus generalization of increases and decreases in VOR gain. J Neurophysiol. 2005;94:3092–100.PubMedGoogle Scholar
  120. 120.
    Schonewille M, Belmeguenai A, Koekkoek SK, Houtman SH, Boele HJ, van Beugen BJ, et al. Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron. 2010;67:618–28.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13:1708–18.PubMedGoogle Scholar
  122. 122.
    Kalmbach BE, Davis T, Ohyama T, Riusech F, Nores WL, Mauk MD. Cerebellar cortex contributions to the expression and timing of conditioned eyelid responses. J Neurophysiol. 2010;103:2039–49.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11:1185–92.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Yang Y, Lisberger SG. Learning on multiple timescales in smooth pursuit eye movements. J Neurophysiol. 2010;104:2850–62.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Brenowitz SD, Regehr WG. Associative short-term synaptic plasticity mediated by endocannabinoids. Neuron. 2005;45:419–31.PubMedGoogle Scholar
  126. 126.
    Bouvier G, Clopath C, Bimbard C, Nadal J-P, Brunel N, Hakim V, et al. Cerebellar learning using perturbations. bioRxiv. 2016;053785.Google Scholar
  127. 127.
    Nisimaru N, Mittal C, Shirai Y, Sooksawate T, Anandaraj P, Hashikawa T, et al. Orexin-neuromodulated cerebellar circuit controls redistribution of arterial blood flows for defense behavior in rabbits. Proc Natl Acad Sci. 2013;110:14124–31.Google Scholar
  128. 128.
    Marder E. Neuromodulation of neuronal circuits: back to the future. Neuron. 2012;76:1–11.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Gu Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience. 2002;111:815–35.PubMedGoogle Scholar
  130. 130.
    Nadim F, Bucher D. Neuromodulation of neurons and synapses. Curr Opin Neurobiol. 2014;29:48–56.PubMedGoogle Scholar
  131. 131.
    Rasmusson DD. The role of acetylcholine in cortical synaptic plasticity. Behav Brain Res. 2000;115:205–18.PubMedGoogle Scholar
  132. 132.
    Schaefer AT. Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol. 2003;89:3143–54.PubMedGoogle Scholar
  133. 133.
    Giocomo LM, Stensola T, Bonnevie T, Van Cauter T, Moser MB, Moser EI. Topography of head direction cells in medial entorhinal cortex. Curr Biol. 2014;24:252–62.PubMedGoogle Scholar
  134. 134.
    Mallory CS, Giocomo LM. Heterogeneity in hippocampal place coding. Curr Opin Neurobiol. 2018;49:158–67.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N. Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron. 2016;89:351–68.PubMedGoogle Scholar
  136. 136.
    Lev-Ram V, Nebyelul Z, Ellisman M, Huang P, Tsien R. Absence of cerebellar long-term depression in mice lacking neuronal nitric oxide synthase. Learn Mem. 1997;4:169–77.PubMedGoogle Scholar
  137. 137.
    Fujita H, Aoki H, Ajioka I, Yamazaki M, Abe M, Oh-Nishi A, et al. Detailed expression pattern of aldolase C (aldoc) in the cerebellum, retina and other areas of the CNS studied in aldoc-venus knock-in mice. PLoS One. 2014;9:e86679.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Fujita H, Morita N, Furuichi T, Sugihara I. Clustered fine compartmentalization of the mouse embryonic cerebellar cortex and its rearrangement into the postnatal striped configuration. J Neurosci. 2012;32:15688–703.PubMedGoogle Scholar
  139. 139.
    Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10:670–81.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Schonewille M, Luo C, Ruigrok TJH, Voogd J, Schmolesky MT, Rutteman M, et al. Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol. 2006;497:670–82.PubMedGoogle Scholar
  141. 141.
    Sillitoe RV, Gopal N, Joyner AL. Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections. Neuroscience. 2009;162:574–88.PubMedGoogle Scholar
  142. 142.
    Sugihara I, Quy PN. Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J Comp Neurol. 2007;500:1076–92.PubMedGoogle Scholar
  143. 143.
    Sugihara I, Shinoda Y. Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci. 2004;24:8771–85.PubMedGoogle Scholar
  144. 144.
    Wang X, Chen G, Gao W, Ebner TJ. Parasagittally aligned, mGluR1-dependent patches are evoked at long latencies by parallel fiber stimulation in the mouse cerebellar cortex in vivo. J Neurophysiol. 2011;105:1732–46.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Cerminara NL, Aoki H, Loft M, Sugihara I, Apps R. Structural basis of cerebellar microcircuits in the rat. J Neurosci. 2013;33:16427–42.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Zhou H, Lin Z, Voges K, Ju C, Gao Z, Bosman LWJ, et al. Cerebellar modules operate at different frequencies. elife. 2014;2014:1–18.Google Scholar
  147. 147.
    Zhou H, Voges K, Lin Z, Ju C, Schonewille M. Differential Purkinje cell simple spike activity and pausing behavior related to cerebellar modules. J Neurophysiol. 2015;113:2524–36.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Kim C-H, Oh S-H, Lee JH, Chang SO, Kim J, Kim SJ. Lobule-specific membrane excitability of cerebellar Purkinje cells. J Physiol. 2012;590:273–88.PubMedGoogle Scholar
  149. 149.
    Xiao J, Cerminara NL, Kotsurovskyy Y, Aoki H, Burroughs A, Wise AK, et al. Systematic regional variations in purkinje cell spiking patterns. PLoS One. 2014;9:e105633.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Witter L, De Zeeuw CI. In vivo differences in inputs and spiking between neurons in lobules VI/VII of neocerebellum and lobule X of archaeocerebellum. Cerebellum. 2015;14:506–15.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Witter L, De Zeeuw CI. Regional functionality of the cerebellum. Curr Opin Neurobiol. 2015;33:150–5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Department of Pediatrics, Brain Repair and Integrative Neuroscience Program, the Research Institute of the McGill University Health CentreMcGill University, Montréal General HospitalQuebecCanada
  2. 2.Department of NeurobiologyStanford UniversityStanfordUSA

Personalised recommendations