Advertisement

The Cerebellum

, Volume 17, Issue 3, pp 308–325 | Cite as

Discovery of Transcription Factors Novel to Mouse Cerebellar Granule Cell Development Through Laser-Capture Microdissection

  • Peter G. Y. Zhang
  • Joanna Yeung
  • Ishita Gupta
  • Miguel Ramirez
  • Thomas Ha
  • Douglas J. Swanson
  • Sayaka Nagao-Sato
  • Masayoshi Itoh
  • Hideya Kawaji
  • Timo Lassmann
  • Carsten O. Daub
  • Erik Arner
  • Michiel de Hoon
  • the FANTOM consortium
  • Piero Carninci
  • Alistair R. R. Forrest
  • Yoshihide Hayashizaki
  • Dan Goldowitz
Original Paper

Abstract

Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells—the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.

Keywords

Cerebellum Development Transcription Regulation Genetics LCM 

Notes

Acknowledgements

We thank J. Yeung, J. Cairns, S. Tremblay, A. Poon, and J. Wilking for the support and suggestions on experimental design and manuscript preparation. We thank F. Lucero Villegas for animal management. We thank B. Lin, M. Larouche, D. Rains, and J. Boyle for technical support.

Funding Information

We thank National Institutes of Health, Natural Sciences and Engineering Research Council of Canada, NeuroDevNet, FANTOM OMICS Group, and University of British Columbia for funding.

Compliance with Ethical Standards

All experimentation with animals was under an approved Canadian Council on Animal Care research protocol (A12-0190).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16(11):444–7.  https://doi.org/10.1016/0166-2236(93)90072-T.CrossRefPubMedGoogle Scholar
  2. 2.
    Altman J, Bayer S. Development of the cerebellar system in relation to its evolution, structure, and functions. New York: CRC; 1997.Google Scholar
  3. 3.
    Goldowitz D, Hamre K. The cells and molecules that make a cerebellum. Trends Neurosci. 1998;21(9):375–82.  https://doi.org/10.1016/S0166-2236(98)01313-7.CrossRefPubMedGoogle Scholar
  4. 4.
    Wechsler-Reya RJ. Analysis of gene expression in the normal and malignant cerebellum. Recent Prog Horm Res. 2003;58(1):227–48.  https://doi.org/10.1210/rp.58.1.227.CrossRefPubMedGoogle Scholar
  5. 5.
    Alder J, Cho NK, Hatten ME. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron. 1996;17(3):389–99.  https://doi.org/10.1016/S0896-6273(00)80172-5.CrossRefPubMedGoogle Scholar
  6. 6.
    Alcantara S, et al. Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development. 2000;127(7):1359–72.PubMedGoogle Scholar
  7. 7.
    Wingate RJ. The rhombic lip and early cerebellar development. Curr Opin Neurobiol. 2001;11(1):82–8.  https://doi.org/10.1016/S0959-4388(00)00177-X.CrossRefPubMedGoogle Scholar
  8. 8.
    Swamynathan SK, Katz JP, Kaestner KH, Ashery-Padan R, Crawford MA, Piatigorsky J. Conditional deletion of the mouse Klf4 gene results in corneal epithelial fragility, stromal edema, and loss of conjunctival goblet cells. Mol Cell Biol. 2007;27(1):182–94.  https://doi.org/10.1128/MCB.00846-06.CrossRefPubMedGoogle Scholar
  9. 9.
    Patapoutian A, Reichardt LF. Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol. 2000;10(3):392–9.  https://doi.org/10.1016/S0959-4388(00)00100-8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999;22(1):103–14.  https://doi.org/10.1016/S0896-6273(00)80682-0.CrossRefPubMedGoogle Scholar
  11. 11.
    Fishell G, Hatten M. Astrotactin provides a receptor system for CNS neuronal migration. Development. 1991;113(3):755–65.PubMedGoogle Scholar
  12. 12.
    Komuro H, Rakic P. Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J Neurosci. 1998;18(4):1478–90.CrossRefPubMedGoogle Scholar
  13. 13.
    PORTERFIELD SP, HENDRICH CE. The role of thyroid hormones in prenatal and neonatal neurological development—current perspectives. Endocr Rev. 1993;14(1):94–106.  https://doi.org/10.1210/edrv-14-1-94.PubMedGoogle Scholar
  14. 14.
    Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science. 1996;274(5289):998–1001.  https://doi.org/10.1126/science.274.5289.998.CrossRefPubMedGoogle Scholar
  15. 15.
    Bonner RF, et al. Laser capture microdissection: molecular analysis of tissue. Science (New York, NY). 1997;278(5342):1481.CrossRefGoogle Scholar
  16. 16.
    Consortium TF. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462–70.CrossRefGoogle Scholar
  17. 17.
    Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, et al. Laser-capture microdissection. Nat Protoc. 2006;1(2):586–603.  https://doi.org/10.1038/nprot.2006.85.CrossRefPubMedGoogle Scholar
  18. 18.
    Kanamori-Katayama M, Itoh M, Kawaji H, Lassmann T, Katayama S, Kojima M, et al. Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res. 2011;21(7):1150–9.  https://doi.org/10.1101/gr.115469.110.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Arnold P, Erb I, Pachkov M, Molina N, van Nimwegen E. MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences. Bioinformatics. 2012;28(4):487–94.  https://doi.org/10.1093/bioinformatics/btr695.CrossRefPubMedGoogle Scholar
  20. 20.
    Arner E, Mejhert N, Kulyte A, Balwierz PJ, Pachkov M, Cormont M, et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes. 2012;61(8):1986–93.  https://doi.org/10.2337/db11-1508.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ha T, Swanson D, Larouche M, Glenn R, Weeden D, Zhang P, et al. CbGRiTS: cerebellar gene regulation in time and space. Dev Biol. 2015;397(1):18–30.  https://doi.org/10.1016/j.ydbio.2014.09.032.CrossRefPubMedGoogle Scholar
  22. 22.
    Topka S, Glassmann A, Weisheit G, Schüller U, Schilling K. The transcription factor Cux1 in cerebellar granule cell development and medulloblastoma pathogenesis. Cerebellum. 2014;13(6):698–712.  https://doi.org/10.1007/s12311-014-0588-x.CrossRefPubMedGoogle Scholar
  23. 23.
    Frank CL et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nature Neurosci, 2015.Google Scholar
  24. 24.
    Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJT. Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development. 2014;141(2):389–98.  https://doi.org/10.1242/dev.099119.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Swanson DJ, Goldowitz D. Experimental Sey mouse chimeras reveal the developmental deficiencies of Pax6-null granule cells in the postnatal cerebellum. Dev Biol. 2011;351(1):1–12.  https://doi.org/10.1016/j.ydbio.2010.11.018.CrossRefPubMedGoogle Scholar
  26. 26.
    Sato A, Sekine Y, Saruta C, Nishibe H, Morita N, Sato Y, et al. Cerebellar development transcriptome database (CDT-DB): profiling of spatio-temporal gene expression during the postnatal development of mouse cerebellum. Neural Netw. 2008;21(8):1056–69.  https://doi.org/10.1016/j.neunet.2008.05.004.CrossRefPubMedGoogle Scholar
  27. 27.
    Banks RE, Dunn MJ, Forbes MA, Stanley A, Pappin D, Naven T, et al. The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis—preliminary findings. Electrophoresis. 1999;20(4–5):689–700.CrossRefPubMedGoogle Scholar
  28. 28.
    Sluka P, O'Donnell L, Stanton PG. Stage-specific expression of genes associated with rat spermatogenesis: characterization by laser-capture microdissection and real-time polymerase chain reaction. Biol Reprod. 2002;67(3):820–8.  https://doi.org/10.1095/biolreprod.102.004879.CrossRefPubMedGoogle Scholar
  29. 29.
    Trogan E, Fisher EA. Laser capture microdissection for analysis of macrophage gene expression from atherosclerotic lesions. Laser Capture Microdissection: Methods and Protocols, 2005: 221–232, DOI:  https://doi.org/10.1385/1-59259-853-6:221.
  30. 30.
    Luo L, Salunga RC, Guo H, Bittner A, Joy KC, Galindo JE, et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med. 1999;5(1):117–22.  https://doi.org/10.1038/4806.CrossRefPubMedGoogle Scholar
  31. 31.
    Cañas RA, et al. Transcriptome analysis in maritime pine using laser capture microdissection and 454 pyrosequencing. Tree Physiol. 2014;34(11):1278–88.  https://doi.org/10.1093/treephys/tpt113.CrossRefPubMedGoogle Scholar
  32. 32.
    Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4(1):44–57.  https://doi.org/10.1038/nprot.2008.211.CrossRefGoogle Scholar
  33. 33.
    Sunmonu NA, Chen L, Li JY. Misexpression of Gbx2 throughout the mesencephalon by a conditional gain-of-function transgene leads to deletion of the midbrain and cerebellum in mice. Genesis. 2009;47(10):667–73.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yuan Z, Yao L, Li M, Liu S, He W, Lu Y. Opposing roles for E2F1 in survival and death of cerebellar granule neurons. Neurosci Lett. 2011;499(3):164–9.  https://doi.org/10.1016/j.neulet.2011.05.045.CrossRefPubMedGoogle Scholar
  35. 35.
    Korhonen P, Huotari V, Soininen H, Salminen A. Glutamate-induced changes in the DNA-binding complexes of transcription factor YY1 in cultured hippocampal and cerebellar granule cells. Mol Brain Res. 1997;52(2):330–3.CrossRefPubMedGoogle Scholar
  36. 36.
    Korhonen P, Kyrylenko S, Suuronen T, Salminen A. Changes in DNA binding pattern of transcription factor YY1 in neuronal degeneration. Neurosci Lett. 2005;377(2):121–4.  https://doi.org/10.1016/j.neulet.2004.11.085.CrossRefPubMedGoogle Scholar
  37. 37.
    Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2(7):484–91.  https://doi.org/10.1038/35081558.CrossRefPubMedGoogle Scholar
  38. 38.
    Aruga J, Minowa O, Yaginuma H, Kuno J, Nagai T, Noda T, et al. Mouse Zic1 is involved in cerebellar development. J Neurosci. 1998;18(1):284–93.CrossRefPubMedGoogle Scholar
  39. 39.
    Rubenstein J, Rakic P. Cellular migration and formation of neuronal connections: comprehensive developmental neuroscience. Vol. 2. 2013: Academic Press.Google Scholar
  40. 40.
    Cheng CW, Yan CHM, Choy SW, Hui MNY, Hui CC, Cheng SH. Zebrafish homologue irx1a is required for the differentiation of serotonergic neurons. Dev Dyn. 2007;236(9):2661–7.  https://doi.org/10.1002/dvdy.21272.CrossRefPubMedGoogle Scholar
  41. 41.
    Becker M-B, Zülch A, Bosse A, Gruss P. Irx1 and Irx2 expression in early lung development. Mech Dev. 2001;106(1):155–8.  https://doi.org/10.1016/S0925-4773(01)00412-9.CrossRefPubMedGoogle Scholar
  42. 42.
    Bosse A, Zülch A, Becker MB, Torres M, Gómez-Skarmeta JL, Modolell J, et al. Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech Dev. 1997;69(1):169–81.  https://doi.org/10.1016/S0925-4773(97)00165-2.CrossRefPubMedGoogle Scholar
  43. 43.
    Christoffels VM, Keijser AGM, Houweling AC, Clout DEW, Moorman AFM. Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Dev Biol. 2000;224(2):263–74.  https://doi.org/10.1006/dbio.2000.9801.CrossRefPubMedGoogle Scholar
  44. 44.
    Díaz-Hernández ME et al. Irx1 and Irx2 are coordinately expressed and regulated by retinoic acid, TGFβ and FGF signaling during chick hindlimb development. 2013.Google Scholar
  45. 45.
    Choy SW, Cheng CW, Lee ST, Li VWT, Hui MNY, Hui CC, et al. A cascade of irx1a and irx2a controls shh expression during retinogenesis. Dev Dyn. 2010;239(12):3204–14.  https://doi.org/10.1002/dvdy.22462.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang D, Wang Y, Dai Y, Wang J, Suo T, Pan H, et al. CIZ1 promoted the growth and migration of gallbladder cancer cells. Tumor Biol. 2015;36(4):2583–91.  https://doi.org/10.1007/s13277-014-2876-y.CrossRefGoogle Scholar
  47. 47.
    Yin J, et al. CIZ1 regulates the proliferation, cycle distribution and colony formation of RKO human colorectal cancer cells. Mol Med Rep. 2013;8(6):1630–4.  https://doi.org/10.3892/mmr.2013.1716.CrossRefPubMedGoogle Scholar
  48. 48.
    Higgins G, Roper KM, Watson IJ, Blackhall FH, Rom WN, Pass HI, et al. Variant Ciz1 is a circulating biomarker for early-stage lung cancer. Proc Natl Acad Sci. 2012;109(45):E3128–35.  https://doi.org/10.1073/pnas.1210107109.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lan MS, Breslin MB. Structure, expression, and biological function of INSM1 transcription factor in neuroendocrine differentiation. FASEB J. 2009;23(7):2024–33.  https://doi.org/10.1096/fj.08-125971.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bae S, Bessho Y, Hojo M, Kageyama R. The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation. Development. 2000;127(13):2933–43.PubMedGoogle Scholar
  51. 51.
    Jhas S, Ciura S, Belanger-Jasmin S, Dong Z, Llamosas E, Theriault FM, et al. Hes6 inhibits astrocyte differentiation and promotes neurogenesis through different mechanisms. J Neurosci. 2006;26(43):11061–71.  https://doi.org/10.1523/JNEUROSCI.1358-06.2006.CrossRefPubMedGoogle Scholar
  52. 52.
    El Zein L, Ait-Lounis A, Morle L, Thomas J, Chhin B, Spassky N, et al. RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J Cell Sci. 2009;122(17):3180–9.  https://doi.org/10.1242/jcs.048348.CrossRefPubMedGoogle Scholar
  53. 53.
    Benadiba C et al. The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development. 2012.Google Scholar
  54. 54.
    Nakayama A, Murakami H, Maeyama N, Yamashiro N, Sakakibara A, Mori N, et al. Role for RFX transcription factors in non-neuronal cell-specific inactivation of the microtubule-associated protein MAP1A promoter. J Biol Chem. 2003;278(1):233–40.  https://doi.org/10.1074/jbc.M209574200.CrossRefPubMedGoogle Scholar
  55. 55.
    Fang R, Olds LC, Sibley E. Spatio-temporal patterns of intestine-specific transcription factor expression during postnatal mouse gut development. Gene Expr Patterns. 2006;6(4):426–32.  https://doi.org/10.1016/j.modgep.2005.09.003.CrossRefPubMedGoogle Scholar
  56. 56.
    Jacquemin P, Durviaux SM, Jensen J, Godfraind C, Gradwohl G, Guillemot F, et al. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol. 2000;20(12):4445–54.  https://doi.org/10.1128/MCB.20.12.4445-4454.2000.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Dusing MR, Maier EA, Aronow BJ, Wiginton DA. Onecut-2 knockout mice fail to thrive during early postnatal period and have altered patterns of gene expression in small intestine. Physiol Genomics. 2010;42(1):115–25.  https://doi.org/10.1152/physiolgenomics.00017.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Klimova L, Antosova B, Kuzelova A, Strnad H, Kozmik Z. Onecut1 and Onecut2 transcription factors operate downstream of Pax6 to regulate horizontal cell development. Dev Biol. 2015;402(1):48–60.  https://doi.org/10.1016/j.ydbio.2015.02.023.CrossRefPubMedGoogle Scholar
  59. 59.
    Engelkamp D, Rashbass P, Seawright A, van Heyningen V. Role of Pax6 in development of the cerebellar system. Development. 1999;126(16):3585–96.PubMedGoogle Scholar
  60. 60.
    Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47(2):201–13.  https://doi.org/10.1016/j.neuron.2005.06.007.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Peter G. Y. Zhang
    • 1
  • Joanna Yeung
    • 1
  • Ishita Gupta
    • 1
  • Miguel Ramirez
    • 1
  • Thomas Ha
    • 1
  • Douglas J. Swanson
    • 1
  • Sayaka Nagao-Sato
    • 2
    • 3
  • Masayoshi Itoh
    • 2
    • 3
    • 4
  • Hideya Kawaji
    • 2
    • 3
  • Timo Lassmann
    • 2
    • 3
    • 5
  • Carsten O. Daub
    • 2
    • 3
  • Erik Arner
    • 2
    • 3
  • Michiel de Hoon
    • 2
    • 3
  • the FANTOM consortium
    • 2
    • 3
  • Piero Carninci
    • 2
    • 3
  • Alistair R. R. Forrest
    • 2
    • 3
  • Yoshihide Hayashizaki
    • 2
    • 4
  • Dan Goldowitz
    • 1
  1. 1.Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
  2. 2.RIKEN Omics Science Center (OSC)YokohamaJapan
  3. 3.RIKEN Center for Life Science TechnologiesYokohamaJapan
  4. 4.RIKEN Preventive Medicine and Diagnosis Innovation ProgramWakoJapan
  5. 5.Telethon Kids InstituteThe University of Western AustraliaSubiacoAustralia

Personalised recommendations