The Cerebellum

, Volume 17, Issue 3, pp 264–275 | Cite as

Effect of Restraining the Base of Support on the Other Biomechanical Features in Patients with Cerebellar Ataxia

  • C. Conte
  • Mariano Serrao
  • L. Cuius
  • A. Ranavolo
  • S. Conforto
  • F. Pierelli
  • L. Padua
Original Paper


This study aimed to analyze the biomechanical consequences of reducing the base of support in patients with ataxia. Specifically, we evaluated the spatio-temporal parameters, upper- and lower-body kinematics, muscle co-activation, and energy recovery and expenditure. The gaits of 13 patients were recorded using a motion analysis system in unperturbed and perturbed walking conditions. In the latter condition, patients had to walk using the same step width and speed of healthy controls. The perturbed walking condition featured reduced gait speed, step length, hip and knee range of motion, and energy recovery and increased double support duration, gait variability, trunk oscillation, and ankle joint muscle co-activation. Narrowing the base of support increased gait instability (e.g., gait variability and trunk oscillations) and induced patients to further use alternative compensatory mechanisms to maintain dynamic balance at the expense of a reduced ability to recover mechanical energy. A widened step width gait is a global strategy employed by patients to increase dynamic stability, reduce the need for further compensatory mechanisms, and thus recover mechanical energy. Our findings suggest that rehabilitative treatment should more specifically focus on step width training.


Widened base of support Step width Perturbed gait Cerebellar ataxia Restrained base of support 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Bodranghien F, Bastian A, Casali C, Hallett M. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. The Cerebellum. 2016;15:369–91.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, et al. Gait pattern in inherited cerebellar ataxias. The cerebellum. Springer-Verlag. 2012;11:194–211.Google Scholar
  3. 3.
    Holmes G. The cerebellum of man. Brain Oxford University Press. 1939;62:1–30.Google Scholar
  4. 4.
    Schrager MA, Kelly VE, Price R, Ferrucci L, Shumway-Cook A. The effects of age on medio-lateral stability during normal and narrow base walking. Gait Posture. 2008;28:466–71.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Freire Junior RC, Porto JM, Rodrigues NC, Brunelli RM, Braga LF, de Abreu DC. Spatial and temporal gait characteristics in pre-frail community-dwelling older adults. Geriatr Gerontol Int. 2016;16:1102–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Koller WC, Trimble J. The gait abnormality of Huntington’s disease. Neurol Lippincott Williams Wilkins. 1985;35:1450–4.Google Scholar
  7. 7.
    Rao AK, Quinn L, Marder KS. Reliability of spatiotemporal gait outcome measures in Huntington’s disease. Mov. Disord. Wiley subscription services, Inc., A Wiley Company 2005;20:1033–7.Google Scholar
  8. 8.
    Hof AL, van Bockel RM, Schoppen T, Postema K. Control of lateral balance in walking. Gait Posture. 2007;25:250–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Don R, Serrao M, Vinci P, Ranavolo A, Cacchio A, Ioppolo F, et al. Foot drop and plantar flexion failure determine different gait strategies in Charcot-Marie-Tooth patients. Clin Biomech. 2007;22:905–16.CrossRefGoogle Scholar
  10. 10.
    Givon U, Zeilig G, Achiron A. Gait analysis in multiple sclerosis: characterization of temporal–spatial parameters using GAITRite functional ambulation system. Gait Posture. 2009;29:138–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Sosnoff JJ, Sandroff BM, Motl RW. Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait Posture. 2012;36:154–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Ranavolo A, Conte C, Iavicoli S, Serrao M, Silvetti A, Sandrini G, et al. Walking strategies of visually impaired people on trapezoidal- and sinusoidal-section tactile groundsurface indicators. Ergonomics. Taylor & Francis: 2011;54:246–56.Google Scholar
  13. 13.
    Serrao M, Chini G, Casali C, Conte C, Rinaldi M, Ranavolo A, et al. Progression of gait ataxia in patients with degenerative cerebellar disorders: a 4-year follow-up study. The cerebellum. Springer US; 2017;16:629–37.Google Scholar
  14. 14.
    Donelan JM, Shipman DW, Kram R, Kuo AD. Mechanical and metabolic requirements for active lateral stabilization in human walking. J Biomech. 2004;37:827–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303–0139, USA; 1992;15:403–42.Google Scholar
  16. 16.
    Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76:492–509.CrossRefPubMedGoogle Scholar
  17. 17.
    Earhart GM, Bastian AJ. Selection and coordination of human locomotor forms following cerebellar damage. J Neurophysiol. 2001;85:759–69.CrossRefPubMedGoogle Scholar
  18. 18.
    Bastian AJ, Zackowski KM, Thach WT. Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol. 2000;83:3019–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Ilg W, Golla H, Thier P, Giese M. Specific influences of cerebellar dysfunctions on gait. Brain. 2007;130:786–98.CrossRefPubMedGoogle Scholar
  20. 20.
    Conte C, Pierelli F, Casali C, Ranavolo A, Draicchio F, Martino G, et al. Upper body kinematics in patients with cerebellar ataxia. The Cerebellum. 2014;13:689–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Mari S, Serrao M, Casali C, Conte C, Martino G, Ranavolo A, et al. Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. The Cerebellum. 2014;13:226–36.CrossRefPubMedGoogle Scholar
  22. 22.
    Martino G, Ivanenko YP, Serrao M, Ranavolo A, D’Avella A, Draicchio F, et al. Locomotor patterns in cerebellar ataxia. J Neurophysiol. 2014;112:2810–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The ataxia neuropharmacology Committee of the World Federation of neurology. J Neurol Sci. 1997;145:205–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech. 2002;35:543–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Davis RB, Õunpuu S, Tyburski D, Gage JRA. Gait analysis data collection and reduction technique. Hum Mov Sci. 1991;10:575–87.CrossRefGoogle Scholar
  26. 26.
    Gutierrez-Farewik E, Bartonek Å, Saraste H. Comparison and evaluation of two common methods to measure center of mass displacement in three dimensions during gait. Hum Mov Sci. 2006;25:238–56.CrossRefPubMedGoogle Scholar
  27. 27.
    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10:361–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Barbero M, Merletti R, Rainoldi A. Atlas of muscle innervation zones. Springer Milan: Milano; 2012.CrossRefGoogle Scholar
  29. 29.
    Serrao M, Conte C, Casali C, Ranavolo A, Mari S, Di Fabio R, et al. Sudden stopping in patients with cerebellar ataxia. The. Cerebellum. 2013;12:607–16.CrossRefPubMedGoogle Scholar
  30. 30.
    Conte C, Serrao M, Casali C, Ranavolo A, Silvia M, Draicchio F, et al. Planned gait termination in cerebellar ataxias. The Cerebellum. 2012;11:896–904.CrossRefPubMedGoogle Scholar
  31. 31.
    Mari S, Serrao M, Casali C, Conte C, Ranavolo A, Padua L, et al. Turning strategies in patients with cerebellar ataxia. Exp Brain Res. 2012;222:65–75.CrossRefPubMedGoogle Scholar
  32. 32.
    Burden AM, Trew M, Baltzopoulos V. Normalisation of gait EMGs: a re-examination. J Electromyogr Kinesiol. 2003;13:519–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Rudolph KS, Axe MJ, Snyder-Mackler L. Dynamic stability after ACL injury: who can hop? Knee surgery. Sport Traumatol Arthrosc. 2000;8:262–9.CrossRefGoogle Scholar
  34. 34.
    Zatsiorsky V, Seluyanov V. The mass and inertia characteristics of the main segments of the human body. Biomech viii-b 1983.Google Scholar
  35. 35.
    Cavagna GA, Willems PA, Legramandi MA, Heglund NC. Pendular energy transduction within the step in human walking. J Exp Biol. 2002;205:3413–22.PubMedGoogle Scholar
  36. 36.
    Cavagna GA, Thys H, Zamboni A. The sources of external work in level walking and running. J. Physiol. Wiley-Blackwell; 1976;262:639–57.Google Scholar
  37. 37.
    Cavagna G. External, Internal and Total mechanical work done during locomotion. Physiol. Asp. Legged Terr. Locomot. Cham: Springer International Publishing; 2017. p. 129–38.Google Scholar
  38. 38.
    Pellegrini B, Peyré-Tartaruga LA, Zoppirolli C, Bortolan L, Savoldelli A, Minetti AE, et al. Mechanical energy patterns in nordic walking: comparisons with conventional walking. Gait Posture. 2017;51:234–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Serrao M, Chini G, Iosa M, Casali C, Morone G, Conte C, et al. Harmony as a convergence attractor that minimizes the energy expenditure and variability in physiological gait and the loss of harmony in cerebellar ataxia. Clin Biomech (Bristol Avon). 2017;48:15–23.CrossRefGoogle Scholar
  40. 40.
    Dipaola M, Pavan E, Cattaneo A, Frazzitta G. Mechanical energy recovery during walking in patients with Parkinson disease. PLoS One 2016.Google Scholar
  41. 41.
    Kang H, Dingwell J. Separating the effects of age and walking speed on gait variability. Gait Posture. 2008;27:572–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Wright R, Bevins J, Pratt D, Sackley C. Metronome cueing of walking reduces gait variability after a cerebellar stroke. Front. 2016.Google Scholar
  43. 43.
    Hallett M, Massaquoi SG. Physiologic studies of dysmetria in patients with cerebellar deficits. Can J Neurol Sci. 1993;20(Suppl 3):S83–92.PubMedGoogle Scholar
  44. 44.
    Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neurosci. Sage Publications Sage CA: thousand oaks, CA; 2004;10:247–59.Google Scholar
  45. 45.
    MacLellan MJ, Patla AE. Adaptations of walking pattern on a compliant surface to regulate dynamic stability. Exp Brain Res. 2006;173:521–30.CrossRefPubMedGoogle Scholar
  46. 46.
    Serrao M, Conte C. Detecting and measuring ataxia in gait. Handb. Hum. Motion. Cham: Springer International Publishing; 2016. p. 1–18.Google Scholar
  47. 47.
    Schniepp R, Schlick C, Pradhan C, Dieterich M, Brandt T, Jahn K, et al. The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J Neurol. 2016;263:1409–17.CrossRefPubMedGoogle Scholar
  48. 48.
    Schniepp R, Wuehr M, Neuhaeusser M, Kamenova M, Dimitriadis K, Klopstock T, et al. Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disord. 2012;27:125–31.CrossRefPubMedGoogle Scholar
  49. 49.
    Chini G, Ranavolo A, Draicchio F, Casali C, Conte C, Martino G, et al. Local stability of the trunk in patients with degenerative cerebellar ataxia during walking. The Cerebellum. 2017;16:26–33.CrossRefPubMedGoogle Scholar
  50. 50.
    Martino G, Ivanenko YP, D’Avella A, Serrao M, Ranavolo A, Draicchio F, et al. Neuromuscular adjustments of gait associated with unstable conditions. J Neurophysiol. 2015;114:2867–82.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cappellini G, Ivanenko YP, Dominici N, Poppele RE, Lacquaniti F. Motor patterns during walking on a slippery walkway. J Neurophysiol. 2010;103:746–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • C. Conte
    • 1
  • Mariano Serrao
    • 2
    • 3
  • L. Cuius
    • 4
  • A. Ranavolo
    • 5
  • S. Conforto
    • 4
  • F. Pierelli
    • 2
    • 6
  • L. Padua
    • 1
    • 7
  1. 1.Fondazione Don Carlo GnocchiMilanItaly
  2. 2.Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, Polo PontinoUniversity of RomeLatinaItaly
  3. 3.Movement Analysis LAB, Rehabilitation Centre Policlinico ItaliaRomeItaly
  4. 4.Biolab3, Department of EngineeringRoma TRE UniversityRomeItaly
  5. 5.Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAILRomeItaly
  6. 6.IRCSS, NeuromedPozzilliItaly
  7. 7.Department of Geriatrics, Neuroscience & OrthopaedicsCatholic UniversityRomeItaly

Personalised recommendations