The Cerebellum

, Volume 16, Issue 4, pp 764–771 | Cite as

After Effects of Cerebellar Continuous Theta Burst Stimulation on Reflexive Saccades and Smooth Pursuit in Humans

  • Silvia Colnaghi
  • P. Colagiorgio
  • S. Ramat
  • E. D’Angelo
  • G. Koch
  • M. Versino
Original Paper

Abstract

The use of cerebellar repetitive transcranial magnetic stimulation has been attempted for perturbing reflexive and voluntary eye movements, but discrepancies are seen between the results of distinct studies possibly due to the different stimulation sites, intensities, and paradigms. We describe the after effects of 20 and 40 s continuous Theta Burst Stimulation (cTBS) as compared to sham stimulation, applied over the lateral cerebellar vermis and paravermis on Reflexive Saccades (RS) and Smooth Pursuit (SP) eye movements, recorded in the 30 min following stimulation. The experiments were carried out in eight healthy volunteers, and eye movements were recorded monocularly with video-oculography. The 40 s cTBS significantly increased the amplitude of ipsilateral RS and the acceleration of the ipsilateral SP, and this effect was detectable all over the 30-min recording period; 40 s cTBS did not modify the other parameters, namely the peak velocity, the duration and the latency of RS, and the latency and the velocity of SP. The 20 s cTBS was ineffective on all RS and SP parameters. Finally, we detected a significant quite-linear reduction of RS peak velocity over time, but this was independent from cTBS and was probably caused by fatigue. The effects of 40 s cTBS in our experiments mimic the disorder of ocular motility in Wallenberg’s syndrome and could result from functional impairment of cerebellopontine pathways. This effect lasts 30 min at least, and can provide a useful framework for adaptive ocular motor studies.

Keywords

Cerebellum cTBS Saccades Smooth pursuit 

References

  1. 1.
    Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Huang YZ, Rothwell JC, Chen RS, Lu CS, Chuang WL. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2011;122(5):1011–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Koch G. Repetitive transcranial magnetic stimulation: a tool for human cerebellar plasticity. Funct Neurol. 2010;25(3):159–63.PubMedGoogle Scholar
  4. 4.
    Koch G, Mori F, Marconi B, Codeca C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol. 2008;119(11):2559–69.CrossRefPubMedGoogle Scholar
  5. 5.
    Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3(3):161–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Brusa L, Ponzo V, Mastropasqua C, Picazio S, Bonni S, Di Lorenzo F, et al. Theta burst stimulation modulates cerebellar-cortical connectivity in patients with progressive supranuclear palsy. Brain Stimul. 2014;7(1):29–35.CrossRefPubMedGoogle Scholar
  7. 7.
    Colnaghi S, Honeine JL, Sozzi S, Schieppati M. Body Sway Increases After Functional Inactivation of the Cerebellar Vermis by cTBS. Cerebellum. 2016.Google Scholar
  8. 8.
    Di Lorenzo F, Martorana A, Ponzo V, Bonni S, D'Angelo E, Caltagirone C, et al. Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer’s disease patients. Front Aging Neurosci. 2013;5:2.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Monaco J, Casellato C, Koch G, D'Angelo E. Cerebellar theta burst stimulation dissociates memory components in eyeblink classical conditioning. Eur J Neurosci. 2014;40(9):3363–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Colnaghi S, Ramat S, D'Angelo E, Cortese A, Beltrami G, Moglia A, et al. Theta-burst stimulation of the cerebellum interferes with internal representations of sensory-motor information related to eye movements in humans. Cerebellum. 2011;10(4):711–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Jenkinson N, Miall RC. Disruption of saccadic adaptation with repetitive transcranial magnetic stimulation of the posterior cerebellum in humans. Cerebellum. 2010;9(4):548–55.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Panouilleres M, Neggers SF, Gutteling TP, Salemme R, van der Stigchel S, van der Geest JN, et al. Transcranial magnetic stimulation and motor plasticity in human lateral cerebellum: dual effect on saccadic adaptation. Hum Brain Mapp. 2012;33(7):1512–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Colnaghi S, Ramat S, D'Angelo E, Versino M. Transcranial magnetic stimulation over the cerebellum and eye movements: state of the art. Funct Neurol. 2010;25(3):165–71.PubMedGoogle Scholar
  14. 14.
    Hashimoto M, Ohtsuka K. Transcranial magnetic stimulation over the posterior cerebellum during visually guided saccades in man. Brain. 1995;118(Pt 5):1185–93.CrossRefPubMedGoogle Scholar
  15. 15.
    Ohtsuka K, Enoki T. Transcranial magnetic stimulation over the posterior cerebellum during smooth pursuit eye movements in man. Brain. 1998;121(Pt 3):429–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Nagel M, Behrmann H, Zangemeister WH. Disturbance of predictive response initiation of eye and head movements in cerebellar patients. Eur Neurol. 2008;60(4):179–85.CrossRefPubMedGoogle Scholar
  17. 17.
    Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Rothwell JC. Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods. 1997;74(2):113–22.CrossRefPubMedGoogle Scholar
  19. 19.
    Tofts PS. The distribution of induced currents in magnetic stimulation of the nervous system. Phys Med Biol. 1990;35(8):1119–28.CrossRefPubMedGoogle Scholar
  20. 20.
    Leigh RJ, Zee DS. The neurology of eye movements. Fifth ed. New York: Oxford University Press; 2015.Google Scholar
  21. 21.
    Ohtsuka K, Noda H. Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. J Neurophysiol. 1991;65(6):1422–34.PubMedGoogle Scholar
  22. 22.
    Robinson FR, Straube A, Fuchs AF. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol. 1993;70(5):1741–58.PubMedGoogle Scholar
  23. 23.
    Helmchen C, Straube A, Buttner U. Saccadic lateropulsion in Wallenberg’s syndrome may be caused by a functional lesion of the fastigial nucleus. J Neurol. 1994;241(7):421–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Kojima Y, Robinson FR, Soetedjo R. Cerebellar fastigial nucleus influence on ipsilateral abducens activity during saccades. J Neurophysiol. 2014;111(8):1553–63.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Eggert T, Robinson FR, Straube A. Modeling inter-trial variability of saccade trajectories: effects of lesions of the oculomotor part of the fastigial nucleus. PLoS Comput Biol. 2016;12(6):e1004866.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Fuchs AF, Robinson FR, Straube A. Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I Neuronal activity J Neurophysiol. 1994;72(6):2714–28.PubMedGoogle Scholar
  27. 27.
    Vahedi K, Rivaud S, Amarenco P, Pierrot-Deseilligny C. Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry. 1995;58(1):91–4.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Waespe W, Wichmann W. Oculomotor disturbances during visual-vestibular interaction in Wallenberg's lateral medullary syndrome. Brain. 1990;113(Pt 3):821–46.CrossRefPubMedGoogle Scholar
  29. 29.
    Gamboa OL, Antal A, Moliadze V, Paulus W. Simply longer is not better: reversal of theta burst aftereffect with prolonged stimulation. Exp Brain Res. 2010;204(2):181–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Silvia Colnaghi
    • 1
    • 2
  • P. Colagiorgio
    • 3
  • S. Ramat
    • 3
  • E. D’Angelo
    • 4
    • 5
  • G. Koch
    • 6
    • 7
  • M. Versino
    • 2
    • 4
  1. 1.Department of Public Health, Experimental and Forensic MedicineUniversity of PaviaPaviaItaly
  2. 2.Laboratory of Neuro-otology and Neuro-ophtalmologyC. Mondino National Neurological InstitutePaviaItaly
  3. 3.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
  4. 4.Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
  5. 5.Brain Connectivity CenterC. Mondino National Neurological InstitutePaviaItaly
  6. 6.Non-invasive Brain Stimulation UnitSanta Lucia Foundation IRCCSRomeItaly
  7. 7.University of Rome Tor VergataRomeItaly

Personalised recommendations