The Cerebellum

, Volume 16, Issue 3, pp 683–690 | Cite as

Effects of Sustained Otolith-Only Stimulation on Post-Rotational Nystagmus

  • Aasef G. ShaikhEmail author
  • David Solomon
Original Paper


Constant velocity rotations in darkness evoke vestibulo-ocular reflex in form of pre- and post-rotational nystagmus under cerebellar supervision. Reorientation of the head with respect to gravity, stimulating otolith and semicircular canal, during post-rotational phase rapidly suppresses the post-rotational nystagmus. We asked if pure otolith stimulation without semicircular canal signal is sufficient for the suppression of post-rotational nystagmus. The experimental paradigm comprised of on-axis rotations in the horizontal plane when the subject was sitting upright, followed by a novel stimulus that combined off-axis centrifugation in the horizontal plane with amplitude matched, yet out-of-phase, on-axis horizontal rotation—double centrifugation. The resultant effect of double centrifugation was pure otolith stimulation that constantly changed direction, yet completely canceled out angular velocity (no horizontal semicircular canal stimulation). Double centrifugation without pre-existing on-axis rotations evoked mixture of horizontal and vertical eye movements, latter reflected the known uncertainty of the vestibular system to differentiate whether the sensory signal is related to low-frequency translations in horizontal plane or head tilts relative to the gravity. Double centrifugation during post-rotational phase suppressed the peak slow phase eye velocity of the post-rotational nystagmus, hence affecting the vestibular ocular reflex gain (eye velocity/head velocity) matrix. The decay time constant, however, was unchanged. Amount of suppression of the peak slow phase eye velocity of the post-rotational nystagmus during double centrifugation correlated with the peak vertical eye velocity evoked by the pure otolith stimuli in the absence of pre-existing on axis rotations. In post-rotational phase, the pure otolith signal affects vestibular ocular reflex gain matrix but does not affect the time constant.


Vestibulo-ocular reflex Balance Cerebellum Vestibular Eye movement Gravity 



Authors thank Americo Migliaccio, PhD; David Zee, MD; and Dale Roberts, MS, for the collegial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Raphan T, Matsuo V, Cohen B. Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res. 1979;35:229–48.CrossRefPubMedGoogle Scholar
  2. 2.
    Benson AJ, Bodin MA. Effect of orientation to the gravitational vertical on nystagmus following rotation about a horizontal axis. Acta Otolaryngol. 1966;61:517–26.CrossRefPubMedGoogle Scholar
  3. 3.
    Raphan T, Cohen B, Henn V. Effects of gravity on rotatory nystagmus in monkeys. Ann N Y Acad Sci. 1981;374:44–55.CrossRefPubMedGoogle Scholar
  4. 4.
    Angelaki DE, Hess BJ. Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex. J Neurophysiol. 1994;71:1222–49.PubMedGoogle Scholar
  5. 5.
    Angelaki DE, Hess BJ. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol. 1995;73:1729–51.PubMedGoogle Scholar
  6. 6.
    Hain TC, Zee DS, Maria BL. Tilt suppression of vestibulo-ocular reflex in patients with cerebellar lesions. Acta Otolaryngol. 1988;105:13–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228:199–202.CrossRefPubMedGoogle Scholar
  8. 8.
    Tarnutzer AA, Wichmann W, Straumann D, Bockisch CJ. The cerebellar nodulus: perceptual and ocular processing of graviceptive input. Ann Neurol. 2015;77:343–7. doi: 10.1002/ana.24329.CrossRefPubMedGoogle Scholar
  9. 9.
    Fernandez C, Goldberg JM. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol. 1976;39:996–1008.PubMedGoogle Scholar
  10. 10.
    Fernandez C, Goldberg JM. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol. 1976;39:970–84.PubMedGoogle Scholar
  11. 11.
    Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron. 2007;54:973–85. doi: 10.1016/j.neuron.2007.06.003.CrossRefPubMedGoogle Scholar
  12. 12.
    Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE. Sensory convergence solves a motion ambiguity problem. Curr Biol. 2005;15:1657–62. doi: 10.1016/j.cub.2005.08.009.CrossRefPubMedGoogle Scholar
  13. 13.
    DiZio P, Lackner JR. Sensory-motor factors triggering the suppression of post-rotary vestibular responses in different gravitoinertial force backgrounds. Exp Brain Res. 1990;80:345–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Paige GD, Tomko DL. Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. J Neurophysiol. 1991;65:1170–82.PubMedGoogle Scholar
  15. 15.
    Robinson DA. The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern. 1982;46:53–66.CrossRefPubMedGoogle Scholar
  16. 16.
    Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Zee DS, Straumann D. Effects of 4-aminopyridine on nystagmus and vestibulo-ocular reflex in ataxia-telangiectasia. J Neurol. 2013;260:2728–35. doi: 10.1007/s00415-013-7046-4.CrossRefPubMedGoogle Scholar
  17. 17.
    Shaikh AG, Palla A, Marti S, Olasagasti I, Optican LM, Zee DS, Straumann D. Role of cerebellum in motion perception and vestibulo-ocular reflex-similarities and disparities. Cerebellum. 2013;12:97–107. doi: 10.1007/s12311-012-0401-7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of NeurologyUniversity Hospitals Cleveland Medical CenterClevelandUSA
  2. 2.Case Western Reserve UniversityClevelandUSA
  3. 3.Daroff-Dell’Osso Ocular Motility LaboratoryClevelandUSA
  4. 4.Louis Stokes Cleveland VA Medical CenterClevelandUSA
  5. 5.Department of NeurologyThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations