Advertisement

The Cerebellum

, Volume 16, Issue 3, pp 623–628 | Cite as

Differential Pattern of Cerebellar Atrophy in Tremor-Predominant and Akinetic/Rigidity-Predominant Parkinson’s Disease

  • Camila Callegari Piccinin
  • Lidiane Soares Campos
  • Rachel Paes Guimarães
  • Luiza Gonzaga Piovesana
  • Maria Cristina Arci dos Santos
  • Paula Christina Azevedo
  • Brunno Machado Campos
  • Thiago Junqueira Ribeiro de Rezende
  • Augusto Amato-Filho
  • Fernando Cendes
  • Anelyssa D’Abreu
Original Paper

Abstract

Parkinson’s disease (PD) is an akinetic-rigid disorder characterized by basal ganglia dysfunction and a possible cerebello-thalamo-cortical circuit involvement. This study aims to investigate the pattern of cerebellar involvement in PD and to assess whether it correlates with clinical parameters. MRI scans were acquired from 50 healthy controls (HC) and 63 patients; 44 were classified as tremor-predominant-PD (PDT) and 19 as akinetic/rigidity-predominant-PD (PDAR). We designed an analysis of covariance including the three groups and contrasted as follows: (1) all 63 PD vs HC, (2) PDT vs HC, (3) PDAR vs HC, and (4) PDT vs PDAR. For a precise evaluation of the cerebellum, we used the SUIT tool for voxel-based morphometry. Applying p = 0.001 and extent threshold = 20 voxels, the overall PD group vs HC showed decreased gray matter (GM) in the left lobules VI and crus I. The PDT group showed decreased cerebellar GM when compared with HC at left lobules VI, VIIb, and VIIIa; at right lobules Crus I, VIIb, and VIIIb; and vermal lobules VI and VIIIa. When compared with PDAR, PDT also showed a decrease in the left lobules VIIIa (p < 0.001). There were small clusters of both positive and negative correlation between disease duration and PDT group. The PDAR group showed no cerebellar changes. Our findings support the growing evidence of cerebellar involvement in the pathogenesis of the resting tremor.

Keywords

Parkinson’s disease Cerebellum Resting tremor Voxel-based morphometry Suit 

Notes

Acknowledgements

The authors thank Dr. J.H. Friedman for critically reviewing this manuscript and his invaluable suggestions.

This work was supported by FAPESP (Sao Paulo Research Foundation), grant number 2013/02660-8 and by CNPq (National Counsel of Technological and Scientific Development), grant number 74873/2010-2.

Contributorship Statement

Author roles:

1) Research project:

A. Conception: ADA, CCP, LSC, FC

B. Organization: ADA, CCP, LSC

C. Execution: CCP, MCAS, LGP, LSC, RPG, PCA, BMC, TJRDR, ACAF, ADA

2) Statistical analysis

A. Design: ADA, BMC, TJTDR, LGP, RPG, PCA, FC

B. Execution: CCP, MCAS, BMC, TJRDR, RPG, LGP

C. Review and critique: ADA, FC

3) Manuscript

A. Writing of the first draft: CCP, ADA

B. Review and critique: ADA, FC, LGP, LSC, RPG, ACAF

Compliance with Ethical Standards

Funding

This work was supported by FAPESP (Sao Paulo Research Foundation), grant number 2013/02660-8 and by CNPq (National Counsel of Technological and Scientific Development), grant number 74873/2010-2.

Competing Interests

The authors declare that they have no conflict of interest.

Financial Disclosure of All Authors

Camila C Piccinin: Research grant from FAPESP

Lidiane S Campos: Educational grant from Ipsen

Rachel P Guimarães: Research grant from FAPESP

Luiza G Piovesana: Educational grant from Ipsen

Maria C A Santos: Research grant from FAPESP

Paula Christina Azevedo: None

Brunno M Campos: Research grant from FAPESP

Thiago Junqueira Ribeiro de Rezende: Research grant from FAPESP

Augusto C Amato-Filho: None

Fernando Cendes: Supported by grants from FAPESP and CNPq, BRAZIL

Anelyssa D’Abreu: Travel grant from TEVA; lecture fees from Torrent; consulting fees from EMS; research grant from FAPESP and CNPq, Brazil

References

  1. 1.
    Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136:696–709. doi: 10.1093/brain/aws360.CrossRefPubMedGoogle Scholar
  2. 2.
    Helmich RC, Janssen MJR, Oyen WJG, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 2011;69:269–81. doi: 10.1002/ana.22361.CrossRefPubMedGoogle Scholar
  3. 3.
    Liu H, Kale Edmiston E, Fan G, Xu K, Zhao B, Shang X, et al. Altered resting-state functional connectivity of the dentate nucleus in Parkinson’s disease. Psychiatry Res - Neuroimaging. 2013;211:64–71. doi: 10.1016/j.pscychresns.2012.10.007.CrossRefPubMedGoogle Scholar
  4. 4.
    Sen S, Kawaguchi A, Truong Y, Lewis MM, Huang X. Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson’s disease. Neuroscience. 2010;166:712–9. doi: 10.1016/j.neuroscience.2009.12.036.CrossRefPubMedGoogle Scholar
  5. 5.
    Pan PL, Song W, Shang HF. Voxel-wise meta-analysis of gray matter abnormalities in idiopathic Parkinson’s disease. Eur J Neurol. 2012;19:199–206. doi: 10.1111/j.1468-1331.2011.03474.x.CrossRefPubMedGoogle Scholar
  6. 6.
    Benninger DH, Thees S, Kollias SS, Bassetti CL, Waldvogel D. Morphological differences in Parkinson’s disease with and without rest tremor. J Neurol. 2009;256:256–63. doi: 10.1007/s00415-009-0092-2.CrossRefPubMedGoogle Scholar
  7. 7.
    Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33:127–38. doi: 10.1016/j.neuroimage.2006.05.056.CrossRefPubMedGoogle Scholar
  8. 8.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4. doi: 10.1136/jnnp.55.3.181.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hoehn MM, Yahr MD, Hoehn MM, Yahr MD. Parkinsonism: onset, progression, and mortality. 2012.Google Scholar
  10. 10.
    Mds T, Goetz CG, Poewe W, Rascol O, Christina S. State of the art review the Unified Parkinson’s Disease Rating Scale ( UPDRS ): status and recommendations. Society. 2003;18:738–50. doi: 10.1002/mds.10473.Google Scholar
  11. 11.
    Campos LS, Guimarães RP, Piovesana LG, De Azevedo PC, Santos LM, D’Abreu A. Clinical predictors of cognitive impairment and psychiatric complications in Parkinson’s disease. Arq Neuropsiquiatr. 2015;73:390–5. doi: 10.1590/0004-282X20150016.
  12. 12.
    Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46:39–46. doi: 10.1016/j.neuroimage.2009.01.045.CrossRefPubMedGoogle Scholar
  13. 13.
    Piao Y-S, Mori F, Hayashi S, Tanji K, Yoshimoto M, Kakita A, et al. Alpha-synuclein pathology affecting Bergmann glia of the cerebellum in patients with alpha-synucleinopathies. Acta Neuropathol. 2003;105:403–9. doi: 10.1007/s00401-002-0655-0.
  14. 14.
    Mori F, Piao Y-S, Hayashi S, Fujiwara H, Hasegawa M, Yoshimoto M, et al. Alpha-synuclein accumulates in Purkinje cells in Lewy body disease but not in multiple system atrophy. J Neuropathol Exp Neurol. 2003;62:812–9.Google Scholar
  15. 15.
    Stepniewska I, Sakai ST, Qi HX, Kaas JH. Somatosensory input to the ventrolateral thalamic region in the macaque monkey: a potential substrate for parkinsonian tremor. J Comp Neurol. 2003;455:378–95. doi: 10.1002/cne.10499.CrossRefPubMedGoogle Scholar
  16. 16.
    Helmich RC, Hallett M, Deuschl G, Toni I, Bloem BR. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain. 2012;135:3206–26. doi: 10.1093/brain/aws023.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.PubMedGoogle Scholar
  18. 18.
    Mure H, Hirano S, Tang CC, Isaias IU, Antonini A, Ma Y, et al. Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. NeuroImage. 2011;54:1244–53. doi: 10.1016/j.neuroimage.2010.09.028.CrossRefPubMedGoogle Scholar
  19. 19.
    Deiber MP, Pollak P, Passingham R, Landais P, Gervason C, Cinotti L, et al. Thalamic stimulation and suppression of parkinsonian tremor. Evidence of a cerebellar deactivation using positron emission tomography. Brain. 1993;116(Pt 1):267–79. doi: 10.1093/brain/116.1.267.CrossRefPubMedGoogle Scholar
  20. 20.
    Parker F, Tzourio N, Blond S, Petit H, Mazoyer B. Evidence for a common network of brain structures involved in parkinsonian tremor and voluntary repetitive movement. Brain Res. 1992;584:11–7. doi: 10.1016/0006-8993(92)90872-7.CrossRefPubMedGoogle Scholar
  21. 21.
    Fukuda M, Barnes A, Simon ES, Holmes A, Dhawan V, Giladi N, et al. Thalamic stimulation for parkinsonian tremor: correlation between regional cerebral blood flow and physiological tremor characteristics. NeuroImage. 2004;21:608–15. doi: 10.1016/j.neuroimage.2003.09.068.CrossRefPubMedGoogle Scholar
  22. 22.
    Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126:199–212. doi: 10.1093/brain/awg022.CrossRefPubMedGoogle Scholar
  23. 23.
    Munhoz RP, Teive HA, Eleftherohorinou H, Coin LJ, Lees AJ, Silveira-Moriyama L. Demographic and motor features associated with the occurrence of neuropsychiatric and sleep complications of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2013;84:883–7. doi: 10.1136/jnnp-2012-304440.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Camila Callegari Piccinin
    • 1
  • Lidiane Soares Campos
    • 2
  • Rachel Paes Guimarães
    • 1
  • Luiza Gonzaga Piovesana
    • 2
  • Maria Cristina Arci dos Santos
    • 1
  • Paula Christina Azevedo
    • 2
  • Brunno Machado Campos
    • 1
  • Thiago Junqueira Ribeiro de Rezende
    • 1
  • Augusto Amato-Filho
    • 3
  • Fernando Cendes
    • 1
    • 2
  • Anelyssa D’Abreu
    • 1
    • 2
  1. 1.Neuroimaging Laboratory, School of Medical SciencesUniversity of CampinasCampinasBrazil
  2. 2.Department of NeurologyUniversity of CampinasCampinasBrazil
  3. 3.Department of RadiologyUniversity of CampinasCampinasBrazil

Personalised recommendations