The Cerebellum

, Volume 16, Issue 2, pp 496–507 | Cite as

Dyslexic Children Show Atypical Cerebellar Activation and Cerebro-Cerebellar Functional Connectivity in Orthographic and Phonological Processing

  • Xiaoxia Feng
  • Le Li
  • Manli Zhang
  • Xiujie Yang
  • Mengyu Tian
  • Weiyi Xie
  • Yao Lu
  • Li Liu
  • Nathalie N. Bélanger
  • Xiangzhi MengEmail author
  • Guosheng DingEmail author
Original Paper


Previous neuroimaging studies have found atypical cerebellar activation in individuals with dyslexia in either motor-related tasks or language tasks. However, studies investigating atypical cerebellar activation in individuals with dyslexia have mostly used tasks tapping phonological processing. A question that is yet unanswered is whether the cerebellum in individuals with dyslexia functions properly during orthographic processing of words, as growing evidence shows that the cerebellum is also involved in visual and spatial processing. Here, we investigated cerebellar activation and cerebro-cerebellar functional connectivity during word processing in dyslexic readers and typically developing readers using tasks that tap orthographic and phonological codes. In children with dyslexia, we observed an abnormally higher engagement of the bilateral cerebellum for the orthographic task, which was negatively correlated with literacy measures. The greater the reading impairment was for young dyslexic readers, the stronger the cerebellar activation was. This suggests a compensatory role of the cerebellum in reading for children with dyslexia. In addition, a tendency for higher cerebellar activation in dyslexic readers was found in the phonological task. Moreover, the functional connectivity was stronger for dyslexic readers relative to typically developing readers between the lobule VI of the right cerebellum and the left fusiform gyrus during the orthographic task and between the lobule VI of the left cerebellum and the left supramarginal gyrus during the phonological task. This pattern of results suggests that the cerebellum compensates for reading impairment through the connections with specific brain regions responsible for the ongoing reading task. These findings enhance our understanding of the cerebellum’s involvement in reading and reading impairment.


Dyslexia Cerebellum Overactivation Cerebro-cerebellar circuits Functional connectivity Compensation 



This work was supported by grants from the National Natural Science Foundation of China (NSFC: 81171016, 81371206, 31571158) and the National Key Basic Research Program of China (2014CB846102). We sincerely thank the children, parents, and schools for their participation and cooperation in our study.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12311_2016_829_MOESM1_ESM.doc (880 kb)
Figure S1 (DOC 880 kb)
12311_2016_829_MOESM2_ESM.doc (42 kb)
Table S1 (DOC 41 kb)


  1. 1.
    Lyon GR, Shaywitz SE, Shaywitz BA. A definition of dyslexia. Annals of dyslexia. 2003;53(1):1–14.CrossRefGoogle Scholar
  2. 2.
    Simos PG, Breier JI, Fletcher JM, Foorman BR, Bergman E, Fishbeck K, et al. Brain activation profiles in dyslexic children during non-word reading: a magnetic source imaging study. Neurosci Lett. 2000;290(1):61–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Shaywitz BA, Shaywitz SE, Pugh KR, Mencl WE, Fulbright RK, Skudlarski P, et al. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiat. 2002;52(2):101–10.CrossRefPubMedGoogle Scholar
  4. 4.
    Richlan F, Kronbichler M, Wimmer H. Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies. Hum Brain Mapp. 2009;30(10):3299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Raschle NM, Zuk J, Gaab N. Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. P Natl Acad Sci USA. 2012;109(6):2156–61.CrossRefGoogle Scholar
  6. 6.
    Cohen L, Jobert A, Le Bihan D, Dehaene S. Distinct unimodal and multimodal regions for word processing in the left temporal cortex. NeuroImage. 2004;23(4):1256–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Schlaggar BL, McCandliss BD. Development of neural systems for reading. Annu Rev Neurosci. 2007;30:475–503.CrossRefPubMedGoogle Scholar
  8. 8.
    Vicari S, Marotta L, Menghini D, Molinari M, Petrosini L. Implicit learning deficit in children with developmental dyslexia. Neuropsychologia. 2003;41(1):108–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Kronbichler M, Wimmer H, Staffen W, Hutzler F, Mair A, Ladurner G. Developmental dyslexia: gray matter abnormalities in the occipitotemporal cortex. Hum Brain Mapp. 2008;29(5):613–25.CrossRefPubMedGoogle Scholar
  10. 10.
    Baillieux H, Vandervliet EJM, Manto M, Parizel PM, De Deyn PP, Marien P. Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain Lang. 2009;108(2):122–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Norton ES, Black JM, Stanley LM, Tanaka H, Gabrieli JDE, Sawyer C, et al. Functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. Neuropsychologia. 2014;61:235–46.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Eckert MA, Leonard CM, Richards TL, Aylward EH, Thomson J, Berninger VW. Anatomical correlates of dyslexia: frontal and cerebellar findings. Brain. 2003;126:482–94.CrossRefPubMedGoogle Scholar
  13. 13.
    Eckert M. Neuroanatomical markers for dyslexia: a review of dyslexia structural imaging studies. Neuroscientist. 2004;10(4):362–71.CrossRefPubMedGoogle Scholar
  14. 14.
    Fernandez VG, Stuebing K, Juranek J, Fletcher JM. Volumetric analysis of regional variability in the cerebellum of children with dyslexia. Cerebellum. 2013;12(6):906–15.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yang YH, Yang Y, Chen BG, Zhang YW, Bi HY. Anomalous cerebellar anatomy in Chinese children with dyslexia. Front Psychol. 2016;7:324.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Leonard CM, Eckert MA, Lombardino LJ, Oakland T, Kranzler J, Mohr CM, et al. Anatomical risk factors for phonological dyslexia. Cereb Cortex. 2001;11(2):148–57.CrossRefPubMedGoogle Scholar
  17. 17.
    Rae C, Harasty JA, Dzendrowskyj TE, Talcott JB, Simpson JM, Blamire AM, et al. Cerebellar morphology in developmental dyslexia. Neuropsychologia. 2002;40(8):1285–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Linkersdorfer J, Lonnemann J, Lindberg S, Hasselhorn M, Fiebach CJ. Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: an ALE meta-analysis. PLoS One. 2012;7(8):e43122.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014;8.Google Scholar
  20. 20.
    Pernet CR, Poline JB, Demonet JF, Rousselet GA. Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neurosci. 2009;10.Google Scholar
  21. 21.
    Yang Y, Bi H-Y, Long Z-Y, Tao S. Evidence for cerebellar dysfunction in Chinese children with developmental dyslexia: an fMRI study. Int J Neurosci. 2013;123(5):300–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Berry EL, Jenkins IH, Nicolson RI, Fawcett AJ, Dean P, Brooks DJ. Cerebellar function is impaired in dyslexia: a PET activation study. Neurology. 1998;50(4):A3–A.Google Scholar
  23. 23.
    Nicolson RI, Fawcett AJ, Berry EL, Jenkins IH, Dean P, Brooks DJ. Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet. 1999;353(9165):1662–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Fawcett AJ, Nicolson RI. Persistent deficits in motor skill of children with dyslexia. J Motor Behav. 1995;27(3):235–40.CrossRefGoogle Scholar
  25. 25.
    Nicolson RI, Fawcett AJ. Comparison of deficits in cognitive and motor skills among children with dyslexia. Annals of Dyslexia. 1994;44(1):147–64.CrossRefPubMedGoogle Scholar
  26. 26.
    Yang Y, Hong-Yan B. Unilateral implicit motor learning deficit in developmental dyslexia. Int J Psychol. 2011;46(1):1–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Barth AE, Denton CA, Stuebing KK, Fletcher JM, Cirino PT, Francis DJ, et al. A test of the cerebellar hypothesis of dyslexia in adequate and inadequate responders to reading intervention. J Int Neuropsych Soc. 2010;16(3):526–36.CrossRefGoogle Scholar
  28. 28.
    Irannejad S, Savage R. Is a cerebellar deficit the underlying cause of reading disabilities? Annals of Dyslexia. 2011;62(1):22–52.CrossRefPubMedGoogle Scholar
  29. 29.
    Beaton A, Marien P. Language, cognition and the cerebellum: grappling with an enigma. Cortex. 2010;46(7):811–20.CrossRefPubMedGoogle Scholar
  30. 30.
    Murdoch BE. The cerebellum and language: historical perspective and review. Cortex. 2010;46(7):858–68.CrossRefPubMedGoogle Scholar
  31. 31.
    Booth JR, Bebko G, Burman DD, Bitan T. Children with reading disorder show modality independent brain abnormalities during semantic tasks. Neuropsychologia. 2007;45(4):775–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Stanberry LI, Richards TL, Berninger VW, Nandy RR, Aylward EH, Maravilla KR, et al. Low-frequency signal changes reflect differences in functional connectivity between good readers and dyslexics during continuous phoneme mapping. Magn Reson Imaging. 2006;24(3):217–29.CrossRefPubMedGoogle Scholar
  33. 33.
    Davis CJ. The spatial coding model of visual word identification. Psychol Rev. 2010;117(3):713.CrossRefPubMedGoogle Scholar
  34. 34.
    Szwed M, Cohen L, Qiao E, Dehaene S. The role of invariant line junctions in object and visual word recognition. Vis Res. 2009;49(7):718–25.CrossRefPubMedGoogle Scholar
  35. 35.
    Fink GR, Marshall JC, Shah NJ, Weiss PH, Halligan PW, Grosse-Ruyken M, et al. Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology. 2000;54(6):1324–31.CrossRefPubMedGoogle Scholar
  36. 36.
    Deluca C, Golzar A, Santandrea E, Lo Gerfo E, Estocinova J, Moretto G, et al. The cerebellum and visual perceptual learning: evidence from a motion extrapolation task. Cortex. 2014;58:52–71.CrossRefPubMedGoogle Scholar
  37. 37.
    Gogos A, Gavrilescu M, Davison S, Searle K, Adams J, Rossell SL, et al. Greater superior than inferior parietal lobule activation with increasing rotation angle during mental rotation: an fMRI study. Neuropsychologia. 2010;48(2):529–35.CrossRefPubMedGoogle Scholar
  38. 38.
    Gross-Tsur V, Ben-Bashat D, Shalev RS, Levav M, Sira LB. Evidence of a developmental cerebello-cerebral disorder. Neuropsychologia. 2006;44(12):2569–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43(10):685–91.CrossRefPubMedGoogle Scholar
  40. 40.
    Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46(1):39–46.CrossRefPubMedGoogle Scholar
  41. 41.
    Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.CrossRefPubMedGoogle Scholar
  42. 42.
    Raven J, Raven JC, Court JH Manual for Raven’s Progressive Matrices and vocabulary scales: Oxford Psychologists Press.Google Scholar
  43. 43.
    Conners C. Conners’ rating scales-revised. Multi-Health Systems. Inc: North Tonawanda, New York; 1997.Google Scholar
  44. 44.
    Wang X, Tao B. Chinese character recognition test battery and assessment scale for primary school children. Shanghai: Shanghai Education Press; 1993.Google Scholar
  45. 45.
    Shu H, Peng H, McBride-Chang C. Phonological awareness in young Chinese children. Dev Sci. 2008;11(1):171–81.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhou W, Xia Z, Bi Y, Shu H. Altered connectivity of the dorsal and ventral visual regions in dyslexic children: a resting-state fMRI study. Front Hum Neurosci. 2015;9:495.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cui Z, Xia Z, Su M, Shu H, Gong G. Disrupted white matter connectivity underlying developmental dyslexia: a machine learning approach. Hum Brain Mapp. 2016;37(4):1443–58.CrossRefPubMedGoogle Scholar
  48. 48.
    Liu L, Wang W, You W, Li Y, Awati N, Zhao X, et al. Similar alterations in brain function for phonological and semantic processing to visual characters in Chinese dyslexia. Neuropsychologia. 2012;50(9):2224–32.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Shu H, Chen X, Anderson RC, Wu NN, Xuan Y. Properties of school Chinese: implications for learning to read. Child Dev. 2003;74(1):27–47.CrossRefPubMedGoogle Scholar
  50. 50.
    You H, Gaab N, Wei N, Cheng-Lai A, Wang Z, Jian J, et al. Neural deficits in second language reading: fMRI evidence from Chinese children with English reading impairment. NeuroImage. 2011;57(3):760–70.CrossRefPubMedGoogle Scholar
  51. 51.
    Frederickson N, Frith, U, Reason R Phonological Assessment Battery (Manual and Test Materials). 1997.Google Scholar
  52. 52.
    Mirsky AF, Anthony BJ, Duncan CC, Ahearn MB, Kellam SG. Analysis of the elements of attention: a neuropsychological approach. Neuropsychol Rev. 1991;2(2):109–45.CrossRefPubMedGoogle Scholar
  53. 53.
    Temple E, Poldrack RA, Salidis J, Deutsch GK, Tallal P, Merzenich MM, et al. Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Neuroreport. 2001;12(2):299–307.CrossRefPubMedGoogle Scholar
  54. 54.
    Siok WT, Spinks JA, Jin Z, Tan LH. Developmental dyslexia is characterized by the co-existence of visuospatial and phonological disorders in Chinese children. Curr Biol. 2009;19(19):R890–2.CrossRefPubMedGoogle Scholar
  55. 55.
    Hoeft F, Meyler A, Hernandez A, Juel C, Taylor-Hill H, Martindale JL, et al. Functional and morphometric brain dissociation between dyslexia and reading ability. P Natl Acad Sci USA. 2007;104(10):4234–9.CrossRefGoogle Scholar
  56. 56.
    Fulbright RK, Jenner AR, Mencl WE, Pugh KR, Shaywitz BA, Shaywitz SE, et al. The cerebellum’s role in reading: a functional MR imaging study. Am J Neuroradiol. 1999;20(10):1925–30.PubMedGoogle Scholar
  57. 57.
    Dehaene S, Pegado F, Braga LW, Ventura P, Nunes G, Jobert A, et al. How learning to read changes the cortical networks for vision and language. Science. 2010;330(6009):1359–64.CrossRefPubMedGoogle Scholar
  58. 58.
    Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33(1):127–38.CrossRefPubMedGoogle Scholar
  59. 59.
    Houde O, Rossi S, Lubin A, Joliot M. Mapping numerical processing, reading, and executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 children. Dev Sci. 2010;13(6):876–85.CrossRefPubMedGoogle Scholar
  60. 60.
    Bolger DJ, Perfetti CA, Schneider W. Cross-cultural effect on the brain revisited: universal structures plus writing system variation. Hum Brain Mapp. 2005;25(1):92–104.CrossRefPubMedGoogle Scholar
  61. 61.
    Koyama MS, Di Martino A, Zuo XN, Kelly C, Mennes M, Jutagir DR, et al. Resting-state functional connectivity indexes reading competence in children and adults. J Neurosci. 2011;31(23):8617–24.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Koyama MS, Di Martino A, Kelly C, Jutagir DR, Sunshine J, Schwartz SJ, et al. Cortical signatures of dyslexia and remediation: an intrinsic functional connectivity approach. PLoS One. 2013;8(2):e55454.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Snowling M. Dyslexia as a phonological deficit: evidence and implications. Child Psychology & Psychiatry Review. 2003;3(1):4–11.CrossRefGoogle Scholar
  64. 64.
    Nicolson RI, Fawcett AJ, Dean P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 2001;24(9):508–11.CrossRefPubMedGoogle Scholar
  65. 65.
    Menghini D, Hagberg GE, Caltagirone C, Petrosini L, Vicari S. Implicit learning deficits in dyslexic adults: an fMRI study. NeuroImage. 2006;33(4):1218–26.CrossRefPubMedGoogle Scholar
  66. 66.
    Richlan F, Sturm D, Schurz M, Kronbichler M, Ladurner G, Wimmer H. A common left occipito-temporal dysfunction in developmental dyslexia and acquired letter-by-letter reading? PLoS One. 2010;5(8).Google Scholar
  67. 67.
    D’Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci-Switz. 2015;9.Google Scholar
  68. 68.
    Marien P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Fernandez VG, Juranek J, Romanowska-Pawliczek A, Stuebing K, Williams VJ, Fletcher JM. White matter integrity of cerebellar-cortical tracts in reading impaired children: A probabilistic tractography study. Brain and Language. 2015.Google Scholar
  70. 70.
    Wu CY, Ho MHR, Chen SHA. A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. NeuroImage. 2012;63(1):381–91.CrossRefPubMedGoogle Scholar
  71. 71.
    Pinel P, Lalanne C, Bourgeron T, Fauchereau F, Poupon C, Artiges E, et al. Genetic and environmental influences on the visual word form and fusiform face areas. Cereb Cortex. 2015;25(9):2478–93.CrossRefPubMedGoogle Scholar
  72. 72.
    Ma LF, Jiang Y, Bai JE, Gong QY, Liu HC, Chen HC, et al. Robust and task-independent spatial profile of the visual word form activation in fusiform cortex. PLoS One. 2011;6(10).Google Scholar
  73. 73.
    Wang JJ, Bi HY, Gao LQ, Wydell TN. The visual magnocellular pathway in Chinese-speaking children with developmental dyslexia. Neuropsychologia. 2010;48(12):3627–33.CrossRefPubMedGoogle Scholar
  74. 74.
    Hu W, Lee HL, Zhang Q, Liu T, Geng LB, Seghier ML, et al. Developmental dyslexia in Chinese and English populations: dissociating the effect of dyslexia from language differences. Brain. 2010;133(Pt 6):1694–706.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yang Y, Jia F, Siok WT, Tan LH. Altered functional connectivity in persistent developmental stuttering. Sci Rep. 2016;6:19128.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiaoxia Feng
    • 1
  • Le Li
    • 1
  • Manli Zhang
    • 2
  • Xiujie Yang
    • 2
  • Mengyu Tian
    • 1
  • Weiyi Xie
    • 2
  • Yao Lu
    • 3
  • Li Liu
    • 1
    • 4
  • Nathalie N. Bélanger
    • 5
  • Xiangzhi Meng
    • 2
    Email author
  • Guosheng Ding
    • 1
    • 4
    Email author
  1. 1.State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingPeople’s Republic of China
  2. 2.Department of Psychology and Beijing Key Laboratory of Behavior and Mental HealthPeking UniversityBeijingPeople’s Republic of China
  3. 3.Beijing Key Laboratory of Applied Experimental Psychology, School of psychologyBeijing Normal UniversityBeijingPeople’s Republic of China
  4. 4.Center for Collaboration and Innovation in Brain and Learning SciencesBeijingPeople’s Republic of China
  5. 5.Laboratory for Language and Cognitive NeuroscienceSan Diego State UniversitySan DiegoUSA

Personalised recommendations