The Cerebellum

, Volume 16, Issue 2, pp 438–449 | Cite as

Sequential Pattern Formation in the Cerebellar Granular Layer

Original Paper

Abstract

Here, we introduce a novel mechanism for temporal recoding by the cerebellar granular layer based on three key properties: the granule cell-Golgi cell inhibitory feedback loop, bursting behaviour of granule cells and the large ratio of granule cells to Golgi cells. We propose that mutual inhibition of granule cells, mediated by Golgi cell feedback inhibition, prevents simultaneous activation. Granule cells are differentiated by firing threshold, resulting in sequential bursts of spikes. We demonstrate the plausibility of the mechanism through a computational simulation of a firing rate model, and further examine its robustness by developing a spiking model incorporating realistic postsynaptic potentials.

Keywords

Cerebellum Adaptive filter Granular layer Sequential winner-take-all Neural network Computational simulation 

References

  1. 1.
    Marr D. A theory of cerebellar cortex. J Physiol 1969;202(2):437.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Albus JS. A theory of cerebellar function. Math Biosci 1971;10(1):25–61.CrossRefGoogle Scholar
  3. 3.
    Fujita M. Adaptive filter model of the cerebellum. Biol Cybern 1982;45(3):195–206.CrossRefPubMedGoogle Scholar
  4. 4.
    Porrill J, Dean P, Anderson SR. Adaptive filters and internal models: multilevel description of cerebellar function. Neural Netw 2013;47:134–49.CrossRefPubMedGoogle Scholar
  5. 5.
    Bratby P, Sneyd J, Montgomery J. Computational architecture of the granular layer of cerebellum-like structures. Cerebellum 2016:1–11. doi:10.1007/s12311-016-0759-z.
  6. 6.
    Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 2000;20(14):5516–25.PubMedGoogle Scholar
  7. 7.
    Montgomery JC, Bodznick D. An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 1994;174(2):145–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Bratby P, Montgomery J, Sneyd J. A biophysical model of adaptive noise filtering in the shark brain. Bull Math Biol 2014;76(2):455–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Kennedy A, Wayne G, Kaifosh P, Alviña K, Abbott LF, Sawtell N B. 2014. A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nat Neurosci. 2014;17(3):416–22.Google Scholar
  10. 10.
    Lepora NF, Porrill J, Yeo CH, Dean P. Sensory prediction or motor control? Application of Marr–Albus type models of cerebellar function to classical conditioning. Front Comput Neurosci 2010:4.Google Scholar
  11. 11.
    Bullock D, Fiala JC, Grossberg S. A neural model of timed response learning in the cerebellum. Neural Netw 1994;7(6):1101–14.CrossRefGoogle Scholar
  12. 12.
    Moore JW, Desmond JE, Berthier NE. Adaptively timed conditioned responses and the cerebellum: a neural network approach. Biol Cybern 1989;62(1):17–28.CrossRefPubMedGoogle Scholar
  13. 13.
    Yamazaki T, Tanaka S. The cerebellum as a liquid state machine. Neural Netw 2007a;20(3):290–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Rössert C, Dean P, Porrill J. At the edge of chaos: how cerebellar granular layer network dynamics can provide the basis for temporal filters. PLoS Comput Biol 2015;11(10):e1004515.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yamazaki T, Tanaka S. A spiking network model for passage-of-time representation in the cerebellum. Eur J Neurosci 2007b;26(8):2279–92.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    D’Angelo E. Cerebellar granule cell. In: Handbook of the cerebellum and cerebellar disorders. Springer; 2013. p. 765–791.Google Scholar
  17. 17.
    Chabrol FP, Arenz A, Wiechert MT, Margrie TW, DiGregorio DA. Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. Nat Neurosci 2015;18(5):718–27.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mapelli L, Solinas S, D’Angelo E. Integration and regulation of glomerular inhibition in the cerebellar granular layer circuit. Front Cell Neurosci 2014;8:55.Google Scholar
  19. 19.
    Izhikevich EM, Moehlis J. Dynamical systems in neuroscience: the geometry of excitability and bursting. SIAM Rev 2008;50(2):397.Google Scholar
  20. 20.
    Jörntell H, Hansel C. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-purkinje cell synapses. Neuron 2006;52(2):227–38.CrossRefPubMedGoogle Scholar
  21. 21.
    Caporale N, Dan Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 2008; 31:25–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Regehr WG. Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol 2012;4(7):a005702.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stackman RW, Hammond RS, Linardatos E, Gerlach A, Maylie J, Adelman JP, Tzounopoulos T. Small conductance Ca 2+-activated K + channels modulate synaptic plasticity and memory encoding. J Neurosci 2002;22(23):10163–71.PubMedGoogle Scholar
  24. 24.
    Nieus T, Sola E, Mapelli J, Saftenku E, Rossi P, D’angelo E. Ltp regulates burst initiation and frequency at mossy fiber–granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J Neurophysiol 2006;95(2):686–99.CrossRefPubMedGoogle Scholar
  25. 25.
    Ermentrout GB, Terman DH. Mathematical foundations of neuroscience. vol. 35. Springer Science & Business Media; 2010.Google Scholar
  26. 26.
    Cesana E, Pietrajtis K, Bidoret C, Isope P, D’Angelo E, Dieudonné S, Forti L. Granule cell ascending axon excitatory synapses onto golgi cells implement a potent feedback circuit in the cerebellar granular layer. J Neurosci 2013;33(30):12430–46.CrossRefPubMedGoogle Scholar
  27. 27.
    Jörntell H, Ekerot C-F. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J Neurosci 2006;26(45):11786–97.CrossRefPubMedGoogle Scholar
  28. 28.
    Mapelli L, Rossi P, Nieus T, D’Angelo E. Tonic activation of gabab receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. J Neurophysiol 2009;101(6):3089–99.CrossRefPubMedGoogle Scholar
  29. 29.
    Crowley JJ, Fioravante D, Regehr WG. Dynamics of fast and slow inhibition from cerebellar golgi cells allow flexible control of synaptic integration. Neuron 2009;63(6):843–53.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    De Schutter E. Computational modeling methods for neuroscientists. Cambridge: MIT Press; 2009.CrossRefGoogle Scholar
  31. 31.
    van Beugen BJ, Gao Z, Boele H-J, Hoebeek F, De Zeeuw CI, et al. High frequency burst firing of granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding. Front Neural Circuits 2013;7:95.Google Scholar
  32. 32.
    Vergara C, Latorre R, Marrion NV, Adelman JP. Calcium-activated potassium channels. Curr Opin Neurobiol 1998;8(3):321–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee K, Duan W, Sneyd J, Herbison AE. Two slow calcium-activated afterhyperpolarization currents control burst firing dynamics in gonadotropin-releasing hormone neurons. J Neurosci 2010;30(18):6214–24.CrossRefPubMedGoogle Scholar
  34. 34.
    Maex R, De Schutter E. Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 1998;80(5):2521–37.PubMedGoogle Scholar
  35. 35.
    D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K +-dependent mechanism. J Neurosci 2001;21(3):759–70.PubMedGoogle Scholar
  36. 36.
    Semyanov A, Walker MC, Kullmann DM, Silver RA. Tonically active GABA A a receptors: modulating gain and maintaining the tone. Trends Neurosci 2004;27(5):262–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 2002;14(11):2531–60.CrossRefPubMedGoogle Scholar
  38. 38.
    Fang Y, Cohen MA, Kincaid TG. Dynamics of a winner-take-all neural network. Neural Netw 1996;9 (7):1141–54.CrossRefPubMedGoogle Scholar
  39. 39.
    Ermentrout B. Complex dynamics in winner-take-all neural nets with slow inhibition. Neural Netw 1992;5(3): 415–31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AucklandAucklandNew Zealand
  2. 2.School of Biological SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations