The Cerebellum

, Volume 16, Issue 2, pp 552–576 | Cite as

Consensus Paper: Cerebellum and Emotion

  • M. Adamaszek
  • F. D’Agata
  • R. Ferrucci
  • C. Habas
  • S. Keulen
  • K. C. Kirkby
  • M. Leggio
  • P. Mariën
  • M. Molinari
  • E. Moulton
  • L. Orsi
  • F. Van Overwalle
  • C. Papadelis
  • A. Priori
  • B. Sacchetti
  • D. J. Schutter
  • C. Styliadis
  • J. Verhoeven
Consensus paper


Over the past three decades, insights into the role of the cerebellum in emotional processing have substantially increased. Indeed, methodological refinements in cerebellar lesion studies and major technological advancements in the field of neuroscience are in particular responsible to an exponential growth of knowledge on the topic. It is timely to review the available data and to critically evaluate the current status of the role of the cerebellum in emotion and related domains. The main aim of this article is to present an overview of current facts and ongoing debates relating to clinical, neuroimaging, and neurophysiological findings on the role of the cerebellum in key aspects of emotion. Experts in the field of cerebellar research discuss the range of cerebellar contributions to emotion in nine topics. Topics include the role of the cerebellum in perception and recognition, forwarding and encoding of emotional information, and the experience and regulation of emotional states in relation to motor, cognitive, and social behaviors. In addition, perspectives including cerebellar involvement in emotional learning, pain, emotional aspects of speech, and neuropsychiatric aspects of the cerebellum in mood disorders are briefly discussed. Results of this consensus paper illustrate how theory and empirical research have converged to produce a composite picture of brain topography, physiology, and function that establishes the role of the cerebellum in many aspects of emotional processing.


Cerebellum Emotion Perception Recognition Processing Learning Neurotopography Neurophysiology Pain Speech Mood 



The research The Cerebellum, Language, and Emotion: the Role of Emotional Prosody (Stefanie Keulen, Jo Verhoeven, Frank Van Overwalle, Peter Mariën) was funded by a Strategic Research Program (SPR15) awarded by the Vrije Universiteit Brussel, Belgium.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRefGoogle Scholar
  2. 2.
    Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, et al. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 2015;14(2):197–220.PubMedCrossRefGoogle Scholar
  3. 3.
    Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Roth MJ, Synofzik M, Lindner A. The cerebellum optimizes perceptual predictions about external sensory events. Curr Biol. 2013;23:930–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Shobe ER. Independent and collaborative contributions of the cerebral hemispheres to emotional processing. Front Hum Neurosci. 2014;22(8):230.Google Scholar
  6. 6.
    Scheuerecker J, Frodl T, Koutsouleris N, Zetzsche T, Wiesmann M, Kleemann AM, et al. Cerebral differences in explicit and implicit emotional processing—an fMRI study. Neuropsychobiology. 2007;56(1):32–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedCrossRefGoogle Scholar
  8. 8.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. Neuroimage. 2012;61:805–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto RR, Hichwa RD, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45:1331–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex. 2008;46(2):161–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2012;26(5):786–99.PubMedCrossRefGoogle Scholar
  13. 13.
    Schutter DJ, Enter D, Hoppenbrouwers SS. High-frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions. J Psychiatry Neurosci. 2009;34(1):60–5.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lupo M, Troisi E, Chiricozzi FR, Clausi S, Molinari M, Leggio M. Inability to process negative emotions in cerebellar damage: a functional transcranial Doppler sonographic study. Cerebellum 2015.Google Scholar
  15. 15.
    Troisi E, Silvestrini M, Matteis M, Monaldo BC, Vernieri F, Caltagirone C. Emotion-related cerebral asymmetry: hemodynamics measured by functional ultrasound. J Neurol. 1999;246(12):1172–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Coricelli G, Crichley HD, Joffily M, O’Doherty JP, Sirigu A, Dolan RJ. Regret and its avoidance: a neuroimaging study of choice behavior. Nat Neurosci. 2005;8:1255–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Coricelli G, Dolan JR, Sirigu A. Brain, emotion and decision making: the paradigmatic example of regret. Trends Cogn Sci. 2007;11:258–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Clausi S, Coricelli G, Pisotta I, Pavone EF, Lauriola M, Molinari M, et al. Cerebellar damage impairs the self-rating of regret feeling in a gambling task. Front Behav Neurosci. 2015;9:113.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Clausi S, Aloise F, Contento MP, Pizzamiglio L, Molinari M, Leggio M. Monitoring mood states in everyday life: a new device for patients with cerebellar ataxia. Psychiatry Res. 2014;220(1-2):719–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.PubMedCrossRefGoogle Scholar
  21. 21.
    Annoni JM, Ptak R, Caldara-Schnetzer AS, Khateb A, Pollermann BZ. Decoupling of autonomic and cognitive emotional reactions after cerebellar stroke. Ann Neurol. 2003;53:654–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Villanueva R. The cerebellum and neuropsychiatric disorders. Psychiatry Res. 2012;198(3):527–32.PubMedCrossRefGoogle Scholar
  23. 23.
    D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural. 2013;6:1–23.Google Scholar
  24. 24.
    Paquette S, Mignault Goulet G, Rothermich K. Prediction, attention and unconscious processing in hierarchical auditory perception. Front Psychol. 2013;4:955–6.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20:229–77.PubMedCrossRefGoogle Scholar
  26. 26.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Leggio M, Molinari M. Cerebellar sequencing: a trick for predicting the future. Cerebellum. 2015;14(1):35–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Blakemore SJ, Smith JS, Steel R, Johnstone EC, Frith CD. The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for breakdown in self-monitoring. Psychol Med. 2000;30:1131–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Molinari M, Restuccia D, Leggio MG. State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum. 2009;8:399–402.PubMedCrossRefGoogle Scholar
  30. 30.
    Keysers C, Gazzola V. Integrating simulation and theory of mind: from self to social cognition. Trends Cogn Sci. 2007;11:194–6. doi: 10.1016/j.tics.2007.02.002.PubMedCrossRefGoogle Scholar
  31. 31.
    Balsters JH, Whelan CD, Robertson IH, Ramnani N. Cerebellum and cognition: evidence for the encoding of higher order rules. Cereb Cortex. 2013;23:1433–43. doi: 10.1093/cercor/bhs127.PubMedCrossRefGoogle Scholar
  32. 32.
    Baetens K, Ma N, Steen J, Van Overwalle F. Involvement of the mentalizing network in social and non social high construal. Soc Cogn Affect Neurosci. 2014;9:817–24. doi: 10.1093/scan/nst048.PubMedCrossRefGoogle Scholar
  33. 33.
    Gordon I, Eilbott J a, Feldman R, Pelphrey K a, Vander Wyk BC. Social, reward, and attention brain networks are involved when online bids for joint attention are met with congruent versus incongruent responses. Soc Neurosci. 2013;8:544–54. doi: 10.1080/17470919.2013.832374.PubMedCrossRefGoogle Scholar
  34. 34.
    Aue T. I feel good whether my friends win or my foes lose: brain mechanisms underlying feeling similarity. Neuropsychologia. 2014;60:159–67.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gazzola V, Keysers C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex. 2009;19:1239–55. doi: 10.1093/cercor/bhn181.PubMedCrossRefGoogle Scholar
  36. 36.
    Schraa-Tam CKL, Rietdijk WJR, Verbeke WJMI, Dietvorst RC, Van Den Berg WE, Bagozzi RP, et al. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. Cerebellum. 2012;11:233–45. doi: 10.1007/s12311-011-0301-2.PubMedCrossRefGoogle Scholar
  37. 37.
    Rocchetti M, Radua J, Paloyelis Y, Xenaki LA, Frascarelli M, Caverzasi E, et al. Neurofunctional maps of the “maternal brain” and the effects of oxytocin: a multimodal voxel-based meta-analysis. Psychiatry Clin Neurosci. 2014. doi: 10.1111/pcn.12185.PubMedGoogle Scholar
  38. 38.
    Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72. doi: 10.1016/j.neuroimage.2013.09.033.PubMedCrossRefGoogle Scholar
  39. 39.
    Kanai R, Bahrami B, Roylance R, Rees G. Online social network size is reflected in human brain structure. Proc R Soc B Biol Sci. 2012;279:1327–34. doi: 10.1098/rspb.2011.1959.CrossRefGoogle Scholar
  40. 40.
    Zink CF, Tong Y, Chen Q, Bassett DS, Stein JL, Meyer-Lindenberg A. Know your place: neural processing of social hierarchy in humans. Neuron. 2008;58:273–83. doi: 10.1016/j.neuron.2008.01.025.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sallet J, Mars RB, Noonan MP, Andersson JL, O’Reilly JX, Jbabdi S, et al. Social network size affects neural circuits in macaques. Science. 2011;334:697–700. doi: 10.1126/science.1210027.PubMedCrossRefGoogle Scholar
  42. 42.
    Noonan MP, Sallet J, Mars RB, Neubert FX, O’Reilly JX, Andersson JL, et al. A neural circuit covarying with social hierarchy in macaques. PLoS Biol. 2014;12, e1001940. doi: 10.1371/journal.pbio.1001940.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Adamaszek M, D’Agata F, Kirkby KC, Trenner MU, Sehm B, Steele CJ, et al. Impairment of emotional facial expression and prosody discrimination due to ischemic cerebellar lesions. Cerebellum. 2014;13:338–45. doi: 10.1007/s12311-013-0537-0.PubMedCrossRefGoogle Scholar
  44. 44.
    D’Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10:600–10. doi: 10.1007/s12311-011-0276-z.PubMedCrossRefGoogle Scholar
  45. 45.
    Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23:17–29. doi: 10.3233/BEN-2010-0270.PubMedCrossRefGoogle Scholar
  46. 46.
    Harenski CL, Harenski KA, Shane MS, Kiehl KA. Aberrant neural processing of moral violations in criminal psychopaths. J Abnorm Psychol. 2010;119:863–74. doi: 10.1037/a0020979.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Moll J, de Oliveira-Souza R, Garrido GJ, Bramati IE, Caparelli-Daquer EMA, Paiva ML, et al. The self as a moral agent: linking the neural bases of social agency and moral sensitivity. Soc Neurosci. 2007;2:336–52. doi: 10.1080/17470910701392024.PubMedCrossRefGoogle Scholar
  48. 48.
    Harenski CL, Antonenko O, Shane MS, Kiehl KA. Gender differences in neural mechanisms underlying moral sensibility. Soc Cogn Affect Neurosci. 2008;3:313–21. doi: 10.1093/scan/nsn026.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Reniers RL, Corcoran R, Vollm BA, Mashru A, Howard R, Liddle PF. Moral decision-making, ToM, empathy and the default mode network. Biol Psychol. 2012;90:202–10. doi: 10.1016/j.biopsycho.2012.03.009.PubMedCrossRefGoogle Scholar
  50. 50.
    Han H, Chen J, Jeong C, Glover GH. Influence of the cortical midline structures on moral emotion and motivation in moral decision-making. Behav Brain Res. 2016;302:237–51. doi: 10.1016/j.bbr.2016.01.001.PubMedCrossRefGoogle Scholar
  51. 51.
    Yeganeh-Doost P, Gruber O, Falkai P, Schmitt A. The role of the cerebellum in schizophrenia: from cognition to molecular pathways. Clinics. 2011;66:71–7. doi: 10.1590/S1807-59322011001300009.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mothersill O, Knee-Zaska C, Donohoe G. Emotion and theory of mind in schizophrenia—investigating the role of the cerebellum. Cerebellum. 2015. doi: 10.1007/s12311-015-0696-2.Google Scholar
  53. 53.
    Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012;488:647–51. doi: 10.1038/nature11310.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wang SSH, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83:518–32. doi: 10.1016/j.neuron.2014.07.016.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sinha P, Kjelgaard MM, Gandhi TK, Tsourides K, Cardinaux AL, Pantazis D, et al. Autism as a disorder of prediction. Proc Natl Acad Sci U S A. 2014;111:15220–5. doi: 10.1073/pnas.1416797111.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49:2045–52. doi: 10.1016/j.neuroimage.2009.10.045.PubMedCrossRefGoogle Scholar
  57. 57.
    Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JLR, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex. 2006;16:811–8. doi: 10.1093/cercor/bhj024.PubMedCrossRefGoogle Scholar
  58. 58.
    Barton RA. Embodied cognitive evolution and the cerebellum. Philos Trans R Soc B Biol Sci. 2012;367:2097–107. doi: 10.1098/rstb.2012.0112.CrossRefGoogle Scholar
  59. 59.
    Dunbar RIM, Shultz S. Evolution in the social brain. Science. 2007;317:1344–7. doi: 10.1126/science.1145463.PubMedCrossRefGoogle Scholar
  60. 60.
    Ekman P. Facial expressions of emotion: an old controversy and new findings. Philos Trans R Soc Lond B Biol Sci. 1992;335(1273):63–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Izard CE. Innate and universal facial expressions: evidence from developmental and cross-cultural research. Psychol Bull. 1994;115(2):288–99.PubMedCrossRefGoogle Scholar
  62. 62.
    Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry. 1978;13(5):501–29.PubMedGoogle Scholar
  63. 63.
    Nashold Jr BS, Slaughter DG. Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg. 1969;31(2):172–86.PubMedCrossRefGoogle Scholar
  64. 64.
    Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn Emot. 2011;26(5):786–99.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ferrucci R, Cortese F, Priori A. Cerebellar tDCS: how to do it. Cerebellum. 2014;14(1):27–30.PubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. Neuroimage. 2014;85(Pt 3):918–23.PubMedCrossRefGoogle Scholar
  67. 67.
    Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R. Non-invasive cerebellar stimulation—a consensus paper. Cerebellum. 2014;13(1):121–38.PubMedCrossRefGoogle Scholar
  68. 68.
    Dempesy CW, Tootle DM, Fontana CJ, Fitzjarrell AT, Garey RE, Heath RG. Stimulation of the paleocerebellar cortex of the cat: increased rate of synthesis and release of catecholamines at limbic sites. Biol Psychiatry. 1983;18(1):127–32.PubMedGoogle Scholar
  69. 69.
    Marcinkiewicz M, Morcos R, Chretien M. CNS connections with the median raphe nucleus: retrograde tracing with WGA-apoHRP-Gold complex in the rat. J Comp Neurol. 1989;289(1):11–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Fox E, Lester V, Russo R, Bowles RJ, Pichler A, Dutton K. Facial expressions of emotion: are angry faces detected more efficiently? Cogn Emot. 2000;14(1):61–92.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Morewedge CK. Negativity bias in attribution of external agency. J Exp Psychol Gen. 2009;138(4):535–45.PubMedCrossRefGoogle Scholar
  72. 72.
    Siegel A, Roeling TA, Gregg TR, Kruk MR. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev. 1999;23(3):359–89.PubMedCrossRefGoogle Scholar
  73. 73.
    Supple WF, Kapp BS. The anterior cerebellar vermis: essential involvement in classically conditioned bradycardia in the rabbit. J Neurosci. 1993;13:3705–11.PubMedGoogle Scholar
  74. 74.
    Supple WF, Leaton RN. Lesions of the cerebellar vermis and cerebellar hemispheres: effects on heart rate conditioning in rats. Behav Neurosci. 1990;104:934–47.PubMedCrossRefGoogle Scholar
  75. 75.
    Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci U S A. 2002;99:8406–11.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162:756–62.PubMedCrossRefGoogle Scholar
  77. 77.
    Sacchetti B, Sacco T, Strata P. Reversible inactivation of amygdala, cerebellum, but not perirhinal cortex, impairs reactivated fear memories. Eur J Neurosci. 2007;25:2875–84.PubMedCrossRefGoogle Scholar
  78. 78.
    Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B, et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature. 2011;473:514–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Koutsikou S, Crook JJ, Earl EV, Leith JL, Watson TC, Lumb BM, et al. Neural substrates underlying fear-evoked freezing: the periaqueductal grey-cerebellar link. J Physiol. 2014;15(592):2197–213.CrossRefGoogle Scholar
  80. 80.
    Gianlorenço AC, Riboldi AM, Silva-Marques B, Mattioli R. Cerebellar vermis H2 receptors mediate fear memory consolidation in mice. Neurosci Lett. 2015;5:57–61.CrossRefGoogle Scholar
  81. 81.
    Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science. 1999;284:1979–81.PubMedCrossRefGoogle Scholar
  82. 82.
    Labrenz F, Icenhour A, Thürling M, Schlamann M, Forsting M, Timmann D, et al. Sex differences in cerebellar mechanisms involved in pain-related safety learning. Neurobiol Learn Mem. 2015;123:92–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Utz A, Thürling M, Ernst TM, Hermann A, Stark R, Wolf OT, et al. Cerebellar vermis contributes to the extinction of conditioned fear. Neurosci Lett. 2015;604:173–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhu L, Scelfo B, Hartell NA, Strata P, Sacchetti B. The effects of fear conditioning on cerebellar LTP and LTD. Eur J Neurosci. 2007;26:219–27.PubMedCrossRefGoogle Scholar
  85. 85.
    Scelfo B, Sacchetti B, Strata P. Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex. Proc Natl Acad Sci U S A. 2008;105:769–74.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zhu L, Sacco T, Strata P, Sacchetti B. Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex. PLoS One. 2011;6, e16673.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2(2):133–46.PubMedCrossRefGoogle Scholar
  88. 88.
    Watson TC, Koutsikou S, Cerminara NL, Flavell CR, Crook JJ, Lumb BM, et al. The olivo-cerebellar system and its relationship to survival circuits. Front Neural Circ. 2013;7:72.Google Scholar
  89. 89.
    Grosso A, Cambiaghi M, Renna A, Milano L, Merlo GR, Sacco T, et al. The higher-order auditory cortex is involved in the assignment of affective value to sensory stimuli. Nat Commun. 2015;6:8886. doi: 10.1038/ncomms9886.PubMedCrossRefGoogle Scholar
  90. 90.
    Grosso A, Cambiaghi M, Concina G, Sacco T, Sacchetti B. Auditory cortex involvement in emotional learning and memory. Neuroscience. 2015;299:45–55.PubMedCrossRefGoogle Scholar
  91. 91.
    Azizi SA, Burne RA, Woodward DJ. The auditory corticopontocerebellar projection in the rat, inputs to the paraflocculus and midvermis: an anatomical and physiological study. Exp Brain Res. 1985;59:36–49.PubMedCrossRefGoogle Scholar
  92. 92.
    O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2009;20:953–65.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Schutter DJLG, Honk JV. The cerebellum on the rise in human emotion. Cerebellum. 2005;4:290–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Moriguchi Y, Decety J, Ohnishi T, Maeda M, Mori T, Nemoto K, et al. Empathy and judging other’s pain: an fMRI study of alexithymia. Cereb Cortex. 2007;17:2223–34.PubMedCrossRefGoogle Scholar
  96. 96.
    Lane DJ, Reiman EM, Ahern GL, Schwartz GE, Davidson RJ. Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry. 1997;154:926–33.PubMedCrossRefGoogle Scholar
  97. 97.
    Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, et al. Neuroimaging evidence implicating the cerebellum in support of sensory/cognitive associated with thirst. PNAS. 2000;97:2332–6.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Moulton EA, Schmahmann J, Beccerra L, Borsook D. The cerebellum and pain: passive integrator or active participator? Brain Res Rev. 2010;65:14–27.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Moulton EA, Elman I, Pendse G, Schmahmann J, Beccerra L, Borsook D. Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasent images. J Neurosci. 2011;31:3795–804.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF. Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans: a functional magnetic resonance imaging study. Neurosci Lett. 2003;335:202–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Keren-Happuch E, Chen S-H A, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;32:593–615.Google Scholar
  102. 102.
    Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiatry Neurosci. 2009;34:418–32.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Seeley WW, Menon V, Schalzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sang L, Qin W, Liu Y, Zhang Y, Jiang T, Yu C. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61:1213–25.PubMedCrossRefGoogle Scholar
  105. 105.
    Roy AK, Shehzad Z, Margulies DS, Kelly AMC, Uddin LQ, Gotimer K, et al. Functional connectivity of the human amygdala using resting-state fMRI. NeuroImage. 2009;45:614–26.PubMedCrossRefGoogle Scholar
  106. 106.
    Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. NeuroImage. 2005;28:39–48.PubMedCrossRefGoogle Scholar
  107. 107.
    Nisimaru N. Cardiovascular models of the cerebellum. J Physiol Sci (Jpn J Physiol). 2004;54:431–48.Google Scholar
  108. 108.
    Maschke M, Schugens M, Kindsvater K, Kolb FP, Diener HC, Timmann D. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72(1):116–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Blood JD, Wu J, Chaplin TM, Hommer R, Vasquez L, et al. The variability heart: high frequency and very low frequency correlates of depressive symptoms in children and adolescents. J Affect Disord. 2015;186:119–26.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Lopiano L, dèSperati C, Montarolo PG. Long-term habituation of the acoustic startle response: role of the cerebellar vermis. Neuroscience. 1990;35(1):79–84.PubMedCrossRefGoogle Scholar
  111. 111.
    Maschke M, Drepper J, Kindsvater K, Kolb FP, Diener HC, Timmann D. Fear conditioned potentiation of the acoustic blink reflex in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry. 2000;68(3):358–64.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Adamaszek M, Olbrich S, Kirkby KC, Woldag H, Heinrich A. Event-related potentials indicating impaired emotional attention in cerebellar stroke - a case study. Neurosci Lett. 2013;548:206–11.PubMedCrossRefGoogle Scholar
  113. 113.
    Adamaszek M, Olbrich S, Kirkby KC, D’Agata F, Langner S, Steele CJ, et al. Neural correlates of disturbed emotional face recognition in cerebellar lesions. Brain Res. 2015;1613:1–12.PubMedCrossRefGoogle Scholar
  114. 114.
    Snow WM, Stoesz BM, Anderson JE. The cerebellum in emotional processing: evidence from human and non-human animals. AIMS Neurosci. 2014;1(1):96–119.Google Scholar
  115. 115.
    Ivry RB. Sensory processing and the cerebellum: timing. In: Consensus paper: the role of the cerebellum in perceptual processes. Baumann O, Borra RJ, Bower JM, et al. Cerebellum 2015; 14: 197-220.Google Scholar
  116. 116.
    Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann N Y Acad Sci. 1990;608:179–207.PubMedCrossRefGoogle Scholar
  117. 117.
    Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.PubMedCrossRefGoogle Scholar
  118. 118.
    Olofsson JK, Nordin S, Sequeira H, Polich J. Affective picture processing: an integrative review of ERP findings. Biol Psychol. 2008;77:247–65.PubMedCrossRefGoogle Scholar
  119. 119.
    Tachibana H, Kawabata K, Tomino Y, Sugita M. Prolonged P3 latency and decreased brain perfusion in cerebellar degeneration. Acta Neurol Scand. 1999;100(5):310–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Rusiniak M, Lewandowska M, Wolak T, Pluta A, Milner R, Ganc M, et al. A modified oddball paradigm for investigation of neural correlates of attention: a simultaneous ERP–fMRI study. Magn Reson Mater Phy. 2013;26:511–26.CrossRefGoogle Scholar
  121. 121.
    Okon-Singer H, Hendler T, Pessoa L, Schackman AJ. The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research. Front Human Neurosci. 2015;9:58. doi: 10.3389/fnhum.2015.00058.CrossRefGoogle Scholar
  122. 122.
    Heath RG. Modulation of emotion with a brain pacemamer. Treatment for intractable psychiatric illness. J Nerv Ment Dis. 1977;165(5):300–17.PubMedCrossRefGoogle Scholar
  123. 123.
    Saab CY, Willis WD. The cerebellum: organization, functions and its role in nociception. Brain Res Rev. 2003;42(1):85–95.PubMedCrossRefGoogle Scholar
  124. 124.
    Ekerot CF, Garwicz M, Schouenborg J. The postsynaptic dorsal column pathway mediates cutaneous nociceptive information to cerebellar climbing fibres in the cat. J Physiol. 1991;441:275–84.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wu J, Chen PX. Discharge response of cerebellar Purkinje cells to stimulation of C-fiber in cat saphenous nerve. Brain Res. 1992;581(2):269–72.CrossRefGoogle Scholar
  126. 126.
    Apkarian AV, Bushnell MS, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463–84.PubMedCrossRefGoogle Scholar
  127. 127.
    Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.PubMedCrossRefGoogle Scholar
  128. 128.
    Cerminara NL, Koutsikou S, Lumb BM, Apps R. The periaqueductal grey modulates sensory input to the cerebellum: a role in coping behaviour? Eur J Neurosci. 2009;29(11):2197–206.PubMedCrossRefGoogle Scholar
  129. 129.
    Helmchen C, Mohr C, Erdmann C, Binkofski F. Cerebellar neural responses related to actively and passively applied noxious thermal stimulation in human subjects: a parametric fMRI study. Neurosci Lett. 2004;361(1-3):237–40.PubMedCrossRefGoogle Scholar
  130. 130.
    Borsook D, Moultoin EA, Tully S, Schmahmann JD, Becerra L. Human cerebellar responses to brush and heat stimuli in healthy andneuropathic pain subjects. Cerebellum. 2008;7(3):252–72.PubMedCrossRefGoogle Scholar
  131. 131.
    Moulton EA, Elman I, Becerrra LR, Goldstein RZ, Borsook D. The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol. 2014;19(3):317–31.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Diano M, D’Agata F, Cauda F, Costa T, Geda E, Saco K, et al. Cerebellar clustering and functional connectivity during pain processing. Cerebellum. 2015;1:1–14.Google Scholar
  133. 133.
    E KH, Chen SH, Ho MH, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35(2):593–615.PubMedCrossRefGoogle Scholar
  134. 134.
    Colibazzi T, Posner J, Wang Z, Gorman D, Gerber A, et al. Neural systems subserving valence and arousal during the experience of induced emotions. Emotion. 2010;10(3):377–89.PubMedCrossRefGoogle Scholar
  135. 135.
    Styliadis C, Ioannides AA, Bamidis PD, Papadelis C. Distinct cerebellar lobules process arousal, valence and their interaction in parallel following a temporal hierarchy. Neuroimage. 2015;110:149–61.PubMedCrossRefGoogle Scholar
  136. 136.
    Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): technical manual and affective ratings. Gainesville: University of Florida, Center for Research in Psychophysiology; 1999.Google Scholar
  137. 137.
    Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic atlas of the human cerebellum. NeuroImage. 2009;46:39–46.PubMedCrossRefGoogle Scholar
  138. 138.
    De Smet HJ, Paquier P, Verhoeven J, Mariën P. The cerebellum: its role in language and related cognitive and affective functions. Brain Lang. 2013;127:334–42.PubMedCrossRefGoogle Scholar
  139. 139.
    Schmahmann J. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.PubMedCrossRefGoogle Scholar
  140. 140.
    Beaton A, Mariën P. Language, cognition and the cerebellum: grappling with an enigma. Cortex. 2010;46:811–20.PubMedCrossRefGoogle Scholar
  141. 141.
    Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Cerebellar areas dedicated to social cognition ? A comparison of meta-analytic and connectivity results. Soc Neurosci. 2015;10:37–41.Google Scholar
  142. 142.
    Sidtis JJ, Van Lancker Sidtis DA. Neurobehavioral approach to dysprosody. Semin Speech Lang. 2003;24:93–105.PubMedCrossRefGoogle Scholar
  143. 143.
    Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.CrossRefGoogle Scholar
  144. 144.
    Jackson JH. On affections of speech from diseases of the brain. Brain. 1915;38:106–74.CrossRefGoogle Scholar
  145. 145.
    Raithel V, Hielscher-Fastabend M. Emotional and linguistic perception of prosody. Reception of prosody. Folia Phoniatr Logo. 2004;56:7–13.CrossRefGoogle Scholar
  146. 146.
    Wildgruber D, Ackermann H, Kreifelts B, Ethofer T. Cerebral processing of linguistic and emotional prosody: fMRI studies. Prog Brain Res. 2006;156:249–68.PubMedCrossRefGoogle Scholar
  147. 147.
    Ross EE. The aprosodias: functional-anatomic organization of the affective components of language in the right hemisphere. Arch Neurol. 1981;38:561–70.PubMedCrossRefGoogle Scholar
  148. 148.
    Le Jeune F, Péron J, Biseul I, Fournier S, Sauleau P, Drapier S, et al. Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a pet study. Brain. 2008;131:1599–608.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Chancelliere A, Kertesz A. Lesion localization in acquired deficits of emotional expression and comprehension. Brain Cogn. 1990;13:133–47.CrossRefGoogle Scholar
  150. 150.
    Van Lancker D, Sidtis JJ. The identification of affective-prosodic stimuli by left- and right-hemisphere-damaged subjects: all errors are not equal. J Speech Hear Res. 1992;35:963–70.PubMedCrossRefGoogle Scholar
  151. 151.
    Kotz SA, Meyer M, Alter K, Besson M, von Cramon Y, Friederici AD. On the lateralization of emotional prosody: an event-related functional MR investigation. Brain Lang. 2003;86:366–76.PubMedCrossRefGoogle Scholar
  152. 152.
    Mitchell RLC, Elliott R, Barry M, Cruttenden A, Woodruff PWR. The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia. 2003;41:1410–21.PubMedCrossRefGoogle Scholar
  153. 153.
    Dapretto M, Hairiri A, Bialik M, Bookheimer S. Cortical correlates of affective vs. linguistic prosody: an fMRI study. Neuroimage. 1999;9:1054.Google Scholar
  154. 154.
    Mayer J, Wildgruber D, Riecker A, Dogil G, Ackermann H, Godd W. Prosody production and perception: converging evidence from fMRI studies, proceedings from ISCA. Int Speech Commun Assoc: Speech Prosody. 2002;2002:487–90.Google Scholar
  155. 155.
    Dogil G, Ackermann H, Grodd W, Haider H, Kamp H, Mayer J, et al. The speaking brain: a tutorial introduction to fMRI experiments in the production of speech, prosody and syntax. J Neurolinguist. 2002;15:59–90.CrossRefGoogle Scholar
  156. 156.
    Van Lancker D, Sidtis D, Pachana N, Cummings JL, Sidtis JJ. Dysprosodic speech following basal ganglia insult: toward a conceptual framework for the study of the cerebral representation of prosody. Brain Lang. 2006;97:135–53.CrossRefGoogle Scholar
  157. 157.
    Alba-Ferrara L, Hausmann M, Mitchell RL, Weis S. The neural correlates of emotional prosody comprehension: disentangling simple from complex emotion. PLoS One. 2011. doi: 10.1371/journal.pone.0028701.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Strelnikov K, Vorobyev VA, Chernigovskaya TV, Medvedev SV. Prosodic clues to syntactic processing—a PET and ERP study. Neuroimage. 2006;29:1127–34.PubMedCrossRefGoogle Scholar
  159. 159.
    Pichon S, Kell CA. Affective and sensorimotor component of emotional prosody generation. J of Neurosci. 2013;33:1640–50.CrossRefGoogle Scholar
  160. 160.
    Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Alalade E, Denny K, Potter G, Steffens D, Wang L. Altered cerebellar-cerebral functional connectivity in geriatric depression. PLoS One. 2011. doi: 10.1371/journal.pone.0020035.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res. 2005;72:109–22.PubMedCrossRefGoogle Scholar
  163. 163.
    Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, et al. Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci. 2010;107:4407–11.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Cecil KM, DelBello MP, Sellars MC, Strakowski SM. Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. J Child Adolesc Psychopharmacol. 2003;13:545–55.PubMedCrossRefGoogle Scholar
  165. 165.
    Singh MK, Spielman D, Libby A, Adams E, Acquaye T, Howe M, et al. Neurochemical deficits in the cerebellar vermis in child offspring of parents with bipolar disorder. Bipolar Disord. 2011;13:189–97.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Mills NP, Delbello MP, Adler CM, Strakowski SM. MRI analysis of cerebellar vermal abnormalities in bipolar disorder. Am J Psychiatry. 2005;162:1530–2.PubMedCrossRefGoogle Scholar
  167. 167.
    Monkul ES, Hatch JP, Sassi RB, Axelson D, Brambilla P, Nicoletti MA, et al. MRI study of the cerebellum in young bipolar patients. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:613–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Kim D, Cho HB, Dager SR, Yurgelun-Todd DA, Yoon S, Lee JH, et al. Posterior cerebellar vermal deficits in bipolar disorder. J Affect Disord. 2013;150:499–506.PubMedCrossRefGoogle Scholar
  169. 169.
    Baldaçara L, Nery-Fernandes F, Rocha M, Quarantini LC, Rocha GG, Guimarães JL, et al. Is cerebellar volume related to bipolar disorder? J Affect Disord. 2011;135:305–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Moorhead TW, McKirdy J, Sussmann JE, Hall J, Lawrie SM, Johnstone EC, et al. Progressive gray matter loss in patients with bipolar disorder. Biol Psychiatry. 2007;62:894–900.PubMedCrossRefGoogle Scholar
  171. 171.
    Adler CM, DelBello MP, Jarvis K, Levine A, Adams J, Strakowski SM. Voxel-based study of structural changes in first-episode patients with bipolar disorder. Biol Psychiatry. 2007;61:776–81.PubMedCrossRefGoogle Scholar
  172. 172.
    Eker C, Simsek F, Yılmazer EE, Kitis O, Cinar C, Eker OD, et al. Brain regions associated with risk and resistance for bipolar I disorder: a voxel-based MRI study of patients with bipolar disorder and their healthy siblings. Bipolar Disord. 2014;16:249–61.PubMedCrossRefGoogle Scholar
  173. 173.
    Frodl TS, Koutsouleris N, Bottlender R, Born C, Jäger M, Scupin I, et al. Depression-related variation in brain morphology over 3 year: effects of stress? Arch Gen Psychiatry. 2008;65:1156–65.PubMedCrossRefGoogle Scholar
  174. 174.
    Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, et al. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol. 2011;80:395–9.PubMedCrossRefGoogle Scholar
  175. 175.
    Schutter DJ, Koolschijn PC, Peper JS, Crone EA. The cerebellum link to neuroticism: a volumetric MRI association study in healthy volunteers. PLoS One. 2012;7, e37252.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Mahon K, Wu J, Malhotra AK, Burdick KE, DeRosse P, Ardekani BA, et al. A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacology. 2009;34:1590–600.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Abe O, Yamasue H, Kasai K, Yamada H, Aoki S, Inoue H, et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res. 2010;181:64–70.PubMedCrossRefGoogle Scholar
  178. 178.
    Guo W, Liu F, Liu J, Yu L, Zhang Z, Zhang J, et al. Is there a cerebellar compensatory effort in first-episode, treatment-naive major depressive disorder at rest? Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:13–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp. 2008;29:683–95.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Wang L, Li K, Zhang Q, Zeng Y, Dai W, Su Y, et al. Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging. Psychol Med. 2014;44:1417–26.PubMedCrossRefGoogle Scholar
  181. 181.
    Rapkin AJ, Berman SM, Mandelkern MA, Silverman DH, Morgan M, London ED. Neuroimaging evidence of cerebellar involvement in premenstrual dysphoric disorder. Biol Psychiatry. 2011;69:374–80.PubMedCrossRefGoogle Scholar
  182. 182.
    Zhang WN, Chang SH, Guo LY, Zhang KL, Wang J. The neural correlates of reward-related processing in major depressive disorder:a meta-analysis of functional magnetic resonance imaging studies. J Affect Disord. 2013;151:531–9.PubMedCrossRefGoogle Scholar
  183. 183.
    Dotson VM, Beason-Held L, Kraut MA, Resnick SM. Longitudinal study of chronic depressive symptoms and regional cerebral blood flow in older men and women. Int J Geriatr Psychiatry. 2009;24:809–19.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Liang MJ, Zhou Q, Yang KR, Yang XL, Fang J, Chen WL, et al. Identify changes of brain regional homogeneity in bipolar disorder and unipolar depression using resting-state fMRI. PLoS One. 2013;8, e79999.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Liu CH, Ma X, Wu X, Zhang Y, Zhou FC, Li F, et al. Regional homogeneity of resting-state brain abnormalities in bipolar and unipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;41:52–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Guo W, Liu F, Xue Z, Gao K, Liu Z, Xiao C, et al. Abnormal resting-state cerebellar-cerebral functional connectivity in treatment-resistant depression and treatment sensitive depression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:51–7.PubMedCrossRefGoogle Scholar
  187. 187.
    Peng HJ, Zheng HR, Ning YP, Zhang Y, Shan BC, Zhang L, et al. Abnormalities of cortical-limbic-cerebellar white matter networks may contribute to treatment-resistant depression: a diffusion tensor imaging study. BMC Psychiatry. 2013;13:72.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Guo W, Liu F, Liu J, Yu M, Zhang Z, Liu G, et al. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine (Baltimore). 2015;94, e560.CrossRefGoogle Scholar
  189. 189.
    Ma Q, Zeng LL, Shen H, Liu L, Hu D. Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res. 2013;1495:86–94.PubMedCrossRefGoogle Scholar
  190. 190.
    Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, et al. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One. 2012;7, e39516.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Gardner A, Åstrand D, Öberg J, Jacobsson H, Jonsson C, Larsson S, et al. Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT. Psychiatry Res. 2014;223:171–7.PubMedCrossRefGoogle Scholar
  192. 192.
    Arnold JF, Zwiers MP, Fitzgerald DA, van Eijndhoven P, Becker ES, Rinck M, et al. Fronto-limbic microstructure and structural connectivity in remission from major depression. Psychiatry Res. 2012;204:40–8.PubMedCrossRefGoogle Scholar
  193. 193.
    Yang R, Zhang H, Wu X, Yang J, Ma M, Gao Y, et al. Hypothalamus-anchored resting brain network changes before and after sertraline treatment in major depression. Biomed Res Int. 2014;2014:915026.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Demirtas-Tatlide, Schmahmann JD. Morality: incomplete without the cerebellum? Brain. 2013;136:1–3.CrossRefGoogle Scholar
  195. 195.
    Funk CM, Gazzanigga MS. The functional brain architecture of human morality. Curr Opin Neurobiol. 2009;19(6):6778–681.CrossRefGoogle Scholar
  196. 196.
    Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Sonni A, Kurdziel LB, Baran B, Spencer RM. The effects of sleep dysfunction on cognition, affect, and quality of life in individuals with cerebellar ataxia. J Clin Sleep Med. 2014;10:535–43.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Lo RY, Figueroa KP, Pulst SM, Perlman S, Wilmot G, et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2016;22:87–92.PubMedCrossRefGoogle Scholar
  199. 199.
    Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum. 2014;13(2):248–68.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurol Res. 1976;2(29):133–46.CrossRefGoogle Scholar
  201. 201.
    Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.PubMedCrossRefGoogle Scholar
  202. 202.
    Schmahmann JD. Dysmetria of thought: an unifying hypothesis for the cerebellar role in sensorimotor function, cognition, and emotion. In: Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 2014; 13(1):151-77????.Google Scholar
  203. 203.
    D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circ. 2013;6(116):1–23.Google Scholar
  204. 204.
    Klein AP, Ulmer JL, Quinet SA, Mathews V, Mark LP. Nonmotor functions of the cerebellum: an introduction. AJNR 2016; 10.3174/ajnr.A4720
  205. 205.
    Reeber SL, Otis TS, Sillitoe RV (2013) New roles for the cerebellum in health and disease. Front Syst Neurosci.Google Scholar
  206. 206.
    Marvel C, Desmond J. Cerebellum and verbal working memory. In: Marien P et al., Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 2014; 13: 386-410.Google Scholar
  207. 207.
    Sacco T, Sacchetti B. Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science. 2010;329:649–56.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Adamaszek
    • 1
  • F. D’Agata
    • 2
  • R. Ferrucci
    • 3
    • 4
  • C. Habas
    • 5
  • S. Keulen
    • 6
    • 7
  • K. C. Kirkby
    • 8
  • M. Leggio
    • 9
    • 10
  • P. Mariën
    • 6
    • 11
  • M. Molinari
    • 9
  • E. Moulton
    • 12
  • L. Orsi
    • 13
  • F. Van Overwalle
    • 14
  • C. Papadelis
    • 15
    • 16
  • A. Priori
    • 3
    • 4
    • 17
  • B. Sacchetti
    • 18
  • D. J. Schutter
    • 19
  • C. Styliadis
    • 20
  • J. Verhoeven
    • 21
    • 22
  1. 1.Department of Clinical and Cognitive Neurorehabilitation, Klinik Bavaria KreischaKreischaGermany
  2. 2.Department of NeuroscienceUniversity of TurinTurinItaly
  3. 3.Fondazione IRCCS Ca’ GrandaGranadaItaly
  4. 4.Università degli Studi di MilanoMilanItaly
  5. 5.Service de NeuroImagerie (NeuroImaging department) Centre Hospitalier national D’Ophtalmologie des 15/20ParisFrance
  6. 6.Department of Clinical and Experimental Neurolinguistics, CLIENVrije Universiteit BrusselBrusselsBelgium
  7. 7.Center for Language and Cognition GroningenRijksuniversiteit GroningenGroningenThe Netherlands
  8. 8.Psychiatry, School of MedicineUniversity of TasmaniaHobartAustralia
  9. 9.I.R.C.C.S. Santa Lucia FoundationRomeItaly
  10. 10.Department of PsychologySapienza University of RomeRomeItaly
  11. 11.Department of Neurology and Memory ClinicZNA Middelheim HospitalAntwerpBelgium
  12. 12.P.A.I.N. Group, Center for Pain and the Brain, Boston Children’s HospitalHarvard Medical SchoolBostonUSA
  13. 13.Neurologic Division 1, Department of Neuroscience and Mental HealthCittà della Salute e della Scienza di TorinoTurinItaly
  14. 14.Faculty of Psychology and Educational SciencesVrije Universiteit BrusselBrusselsBelgium
  15. 15.Fetal-Neonatal Neuroimaging and Developmental CenterBoston Children’s HospitalBostonUSA
  16. 16.Division of Newborn Medicine, Department of Medicine, Boston Children’s HospitalHarvard Medical SchoolBostonUSA
  17. 17.III Clinica NeurologicaPolo Ospedaliero San PaoloSan PaoloItaly
  18. 18.Department of Neuroscience, Section of PhysiologyUniversity of TurinTorinoItaly
  19. 19.Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
  20. 20.Medical School, Faculty of Health SciencesAristotle University of ThessalonikiThessalonikiGreece
  21. 21.Department of Language and Communication ScienceCity UniversityLondonUK
  22. 22.Computational Linguistics and Psycholinguistics Research Center (CLIPS)Universiteit AntwerpenAntwerpBelgium

Personalised recommendations