Advertisement

The Cerebellum

, Volume 16, Issue 2, pp 358–375 | Cite as

Interhemispheric Connectivity Characterizes Cortical Reorganization in Motor-Related Networks After Cerebellar Lesions

  • Fabrizio De Vico Fallani
  • Silvia Clausi
  • Maria Leggio
  • Mario Chavez
  • Miguel Valencia
  • Anton Giulio Maglione
  • Fabio Babiloni
  • Febo Cincotti
  • Donatella Mattia
  • Marco Molinari
Original Paper

Abstract

Although cerebellar-cortical interactions have been studied extensively in animal models and humans using modern neuroimaging techniques, the effects of cerebellar stroke and focal lesions on cerebral cortical processing remain unknown. In the present study, we analyzed the large-scale functional connectivity at the cortical level by combining high-density electroencephalography (EEG) and source imaging techniques to evaluate and quantify the compensatory reorganization of brain networks after cerebellar damage. The experimental protocol comprised a repetitive finger extension task by 10 patients with unilateral focal cerebellar lesions and 10 matched healthy controls. A graph theoretical approach was used to investigate the functional reorganization of cortical networks. Our patients, compared with controls, exhibited significant differences at global and local topological level of their brain networks. An abnormal rise in small-world network efficiency was observed in the gamma band (30–40 Hz) during execution of the task, paralleled by increased long-range connectivity between cortical hemispheres. Our findings show that a pervasive reorganization of the brain network is associated with cerebellar focal damage and support the idea that the cerebellum boosts or refines cortical functions. Clinically, these results suggest that cortical changes after cerebellar damage are achieved through an increase in the interactions between remote cortical areas and that rehabilitation should aim to reshape functional activation patterns. Future studies should determine whether these hypotheses are limited to motor tasks or if they also apply to cerebro-cerebellar dysfunction in general.

Keywords

Graph theory Cerebellum EEG Functional connectivity Brain plasticity 

Notes

Acknowledgments

This paper only reflects the authors’ views, and their funding agencies are not liable for any use that may be made of the information contained herein. This study was performed with the support of Ministero della Salute RF-2011-02348213 and RC14-G to MM; MC is partially supported by the EU-LASAGNE Project, Contract no. 318132 (STREP). FD is partially supported by the program “Investissements d’avenir” ANR-10-IAIHU-06. The authors wish to acknowledge the anonymous reviewers for their constructive comments. The editing support of Blue Pencil Science is acknowledged.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12311_2016_811_MOESM1_ESM.doc (231 kb)
ESM 1 (DOC 231 kb)
12311_2016_811_MOESM2_ESM.doc (2.8 mb)
ESM 2 (DOC 2907 kb)
12311_2016_811_MOESM3_ESM.doc (317 kb)
ESM 3 (DOC 317 kb)
12311_2016_811_MOESM4_ESM.doc (86 kb)
ESM 4 (DOC 85 kb)
12311_2016_811_MOESM5_ESM.doc (56 kb)
ESM 5 (DOC 56 kb)
12311_2016_811_MOESM6_ESM.doc (396 kb)
ESM 6 (DOC 396 kb)
12311_2016_811_MOESM7_ESM.doc (494 kb)
ESM 7 (DOC 494 kb)
12311_2016_811_MOESM8_ESM.doc (1.5 mb)
ESM 8 (DOC 1510 kb)

References

  1. 1.
    Dijkhuizen RM, Zaharchuk G, Otte WM. Assessment and modulation of resting-state neural networks after stroke. Curr Opin Neurol. 2014;27:637–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang L, Yu C, Chen H, Qin W, He Y, Fan F, et al. Dynamic functional reorganization of the motor execution network after stroke. Brain. 2010;133:1224–38.PubMedCrossRefGoogle Scholar
  3. 3.
    Wu J, Quinlan EB, Dodakian L, McKenzie A, Kathuria N, Zhou RJ, et al. Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain. 2015;138(8):2359–69.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.PubMedCrossRefGoogle Scholar
  5. 5.
    Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15:683–95.PubMedCrossRefGoogle Scholar
  6. 6.
    De Vico Fallani F, Pichiorri F, Morone G, Molinari M, Babiloni F, Cincotti F, et al. Multiscale topological properties of functional brain networks during motor imagery after stroke. Neuroimage. 2013;83:438–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 2011;134:1264–76.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kelly PJ, Stein J, Shafqat S, Eskey C, Doherty D, Chang Y, et al. Functional recovery after rehabilitation for cerebellar stroke. Stroke. 2001;32:530–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Marsden J, Harris C. Cerebellar ataxia: pathophysiology and rehabilitation. Clin Rehabil. 2011;25:195–216.PubMedCrossRefGoogle Scholar
  10. 10.
    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134:3672–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.PubMedCrossRefGoogle Scholar
  13. 13.
    Molinari M, Filippini V, Leggio MG. Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience. 2002;111:863–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66.PubMedCrossRefGoogle Scholar
  15. 15.
    Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2011;11:336–51.CrossRefGoogle Scholar
  16. 16.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.PubMedCrossRefGoogle Scholar
  17. 17.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Ann Rev Neurosci. 2009;32:413–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 1983;286:237–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Clausi S, Bozzali M, Leggio MG, Di Paola M, Hagberg GE, Caltagirone C, et al. Quantification of gray matter changes in the cerebral cortex after isolated cerebellar damage: a voxel-based morphometry study. Neuroscience. 2009;162:827–35.PubMedCrossRefGoogle Scholar
  21. 21.
    Jissendi P, Baudry S, Baleriaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neurorad. 2008;35:42–50.CrossRefGoogle Scholar
  22. 22.
    Kipping JA, Grodd W, Kumar V, Taubert M, Villringer A, Margulies DS. Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: an intrinsic functional connectivity study. Neuroimage. 2013;83:837–48.PubMedCrossRefGoogle Scholar
  23. 23.
    O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013a;109:46–57.Google Scholar
  25. 25.
    Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, et al. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat. 2012;6:31.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ben Taib NO, Manto M, Pandolfo M, Brotchi J. Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat. J Physiol. 2005;567:293–300.PubMedCrossRefGoogle Scholar
  28. 28.
    Oliveri M, Torriero S, Koch G, Salerno S, Petrosini L, Caltagirone C. The role of transcranial magnetic stimulation in the study of cerebellar cognitive function. Cerebellum. 2007;6(1):95–101.PubMedCrossRefGoogle Scholar
  29. 29.
    Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol. 2014;592(16):3345–69.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Di Lazzaro V, Restuccia D, Nardone R, Leggio MG, Oliviero A, Profice P, et al. Motor cortex changes in a patient with hemicerebellectomy. Electroencephalogr Clin Neurophysiol. 1995;97:259–63.PubMedGoogle Scholar
  31. 31.
    Di Lazzaro V, Molinari M, Restuccia D, Leggio MG, Nardone R, Fogli D, et al. Cerebro-cerebellar interactions in man: neurophysiological studies in patients with focal cerebellar lesions. Electroencephalogr Clin Neurophysiol. 1994a;93:27–34.Google Scholar
  32. 32.
    Di Lazzaro V, Restuccia D, Molinari M, Leggio MG, Nardone R, Fogli D, et al. Excitability of the motor cortex to magnetic stimulation in patients with cerebellar lesions. J Neurol Neurosurg Psychiatry. 1994b;57:108–10.Google Scholar
  33. 33.
    Restuccia D, Della MG, Valeriani M, Leggio MG, Molinari M. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain. 2007;130:276–87.PubMedCrossRefGoogle Scholar
  34. 34.
    Restuccia D, Valeriani M, Barba C, Capecci M, Filippini V, et al. Functional changes of the primary somatosensory cortex in patients with unilateral cerebellar lesions. Brain. 2001;124:757–68.PubMedCrossRefGoogle Scholar
  35. 35.
    Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.PubMedCrossRefGoogle Scholar
  36. 36.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145(2):205–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Orsini A, Laicardi C. Wais-R. Contributo alla taratura italiana. Firenze: Organizzazioni Speciali; 2001.Google Scholar
  38. 38.
    Wechsler D. Wais-R Wechsler Adult Intelligence Scale Revised. Firenze: Organizzazioni Speciali; 1997.Google Scholar
  39. 39.
    Dimitrova A, Zeljko D, Schwarze F, Maschke M, Gerwig M, Frings M, et al. Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage. 2006;30:12–25.PubMedCrossRefGoogle Scholar
  40. 40.
    Raez MBI, Hussain MS, Mohd-Yasin F. Techniques of EMG signal analysis: detection, processing, classification and applications. Biological Procedures Online. 2006;8:11–35.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Luft AR, Waller S, Forrester L, Smith GV, Whitall J, Macko RF, et al. Lesion location alters brain activation in chronically impaired stroke survivors. Neuroimage. 2004;21:924–35.PubMedCrossRefGoogle Scholar
  42. 42.
    Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. The influence of time after stroke on brain activations during a motor task. Ann Neurol. 2004;55:829–34.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol. 2004;115:2292–307.PubMedCrossRefGoogle Scholar
  44. 44.
    Babiloni F, Babiloni C, Carducci F, Fattorini L, Anello C, Onorati P, et al. High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject’s head model. Electroencephalogr Clin Neurophysiol. 1997;102:69–80.PubMedCrossRefGoogle Scholar
  45. 45.
    Gevins A, Le J, Martin NK, Brickett P, Desmond J, Reutter B. High-resolution EEG—124-channel recording, spatial deblurring and MRI integration methods. Electroencephalogr Clin Neurophysiol. 1994;90:337–58.PubMedCrossRefGoogle Scholar
  46. 46.
    He B, Wang YH, Wu DS. Estimating cortical potentials from scalp EEG’s in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Trans Biomed Eng. 1999;46:1264–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Schoffelen JM, Gross J. Source connectivity analysis with MEG and EEG. Hum Brain Mapp. 2009;30:1857–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Tognoli E, Kelso JAS. Brain coordination dynamics: true and false faces of phase synchrony and metastability. Prog Neurobiol. 2009;87:31–40.PubMedCrossRefGoogle Scholar
  49. 49.
    De Vico Fallani F, Richiardi J, Chavez M, Achard S. Graph analysis of functional brain networks: practical issues in translational neuroscience. Philosophical Transactions of the Royal Society B-Biological Sciences. 2014;369:1653.CrossRefGoogle Scholar
  50. 50.
    De Vico Fallani F, Baluch F, Astolfi L, Subramanian D, Zouridakis G, Babiloni F. Structural organization of functional networks from EEG signals during motor learning tasks. Int J Bifurcation Chaos. 2010;20:905–12.CrossRefGoogle Scholar
  51. 51.
    van Wijk BC, Stam CJ, Daffertshofer A. Comparing brain networks of different size and connectivity density using graph theory. PLoS One. 2010;5(10):e13701.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist. 2006;12:512–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys. 2007;1:3.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Erdos P, Rényi A. On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences. 1960. p. 17–61.Google Scholar
  55. 55.
    Latora V, Marchiori M. Efficient behavior of small-world networks. Physical Rev Lett 2001;87:198701.Google Scholar
  56. 56.
    Downes JH, Hammond MW, Xydas D, Spencer MC, Becerra VM, Warwick K, et al. Emergence of a small-world functional network in cultured neurons. PLoS Comput Biol. 2012;8:e1002522.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bullmore ET, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13:336–49.PubMedGoogle Scholar
  58. 58.
    Barthelemy M. Spatial networks. Phys Rep. 2011;499:1–101.CrossRefGoogle Scholar
  59. 59.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Royal Stat Soc Series B-Method. 1995;57:289–300.Google Scholar
  60. 60.
    Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ. Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging. 1999;18:32–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Hayasaka S, Nichols TE. Validating cluster size inference: random field and permutation methods. Neuroimage. 2003;20:2343–56.PubMedCrossRefGoogle Scholar
  62. 62.
    Salvador R, Suckling J, Schwarzbauer C, Bullmore E. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci. 2005;360:937–46.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron. 1999;24:49–65.PubMedCrossRefGoogle Scholar
  64. 64.
    Chu CJ, Tanaka N, Diaz J, Edlow BL, Wu O, Hämäläinen M, et al. EEG functional connectivity is partially predicted by underlying white matter connectivity. NeuroImage. 2015;108:23–33.PubMedCrossRefGoogle Scholar
  65. 65.
    Buzsáki G, Wang XJ. Mechanisms of gamma oscillations. Ann Rev Neurosci. 2012;35:203–25.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gray CM, Engel AK, Konig P, Singer W. Synchronization of oscillatory neuronal responses in cat striate cortex-temporal properties. Visual Neurosci. 1992;8:337–47.CrossRefGoogle Scholar
  67. 67.
    Martin Vinck M, Womelsdorf T, Fries P. Gamma-band synchronization and information transmission. In: Quiroga R-QPS, editor. Principles of neural coding. Boca Raton: CRC Press; 2013. 449–69Google Scholar
  68. 68.
    Abeles M. Corticonics: neural circuits of the cerebral cortex. New York: Cambridge UP; 1991.CrossRefGoogle Scholar
  69. 69.
    Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9(10):474–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Fell J, Fernandez G, Klaver P, Elger CE, Fries P. Is synchronized neuronal gamma activity relevant for selective attention? Brain Res Rev. 2003;42:265–72.PubMedCrossRefGoogle Scholar
  71. 71.
    Nikolic D, Fries P, Singer W. Gamma oscillations: precise temporal coordination without a metronome. Trends Cogn Sci. 2013;17:54–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Whittington MA, Cunningham MO, Lebeau FEN, Racca C, Traub RD. Multiple origins of the cortical gamma rhythm. Dev Neurobiol. 2011;71:92–106.PubMedCrossRefGoogle Scholar
  73. 73.
    Steriade M, Contreras D, Amzica F, Timofeev I. Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci. 1996;16:2788–808.PubMedGoogle Scholar
  74. 74.
    Popa D, Spolidoro M, Proville RD, Guyon N, Belliveau L, Léna C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33:6552–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Bentivoglio M, Minciacchi D, Molinari M, Granato A, Spreafico R, Macchi G. The intrinsic and extrinsic organization of the thalamic intralaminar nuclei. In: Bentivoglio M, Spreafico R, editors. Cellular thalamic mechanisms. Amsterdam: Elsevier; 1988. p. 221–37.Google Scholar
  76. 76.
    Haarmeier T, Thier P. The attentive cerebellum—myth or reality? Cerebellum. 2007;6:177–83.PubMedCrossRefGoogle Scholar
  77. 77.
    Ivry RB, Spencer RMC. Evaluating the role of the cerebellum in temporal processing: beware of the null hypothesis. Brain. 2004;127:E13.PubMedCrossRefGoogle Scholar
  78. 78.
    Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Herz DM, Christensen MS, Reck C, Florin E, Barbe MT, Stahlhut C, et al. Task-specific modulation of effective connectivity during two simple unimanual motor tasks: a 122-channel EEG study. Neuroimage. 2012;59:3187–93.PubMedCrossRefGoogle Scholar
  81. 81.
    Craddock M, Martinovic J, Müller MM. Accounting for microsaccadic artifacts in the EEG using independent component analysis and beamforming. Psychophysiology. 2016;53(4):553–65.PubMedCrossRefGoogle Scholar
  82. 82.
    Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci. 2013;7:138.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M. Vicarious function within the human primary motor cortex?: a longitudinal fMRI stroke study. Brain. 2005;128:1122–38.PubMedCrossRefGoogle Scholar
  84. 84.
    Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67:448–58.PubMedCrossRefGoogle Scholar
  85. 85.
    Westlake KP, Hinkley LB, Bucci M, Guggisberg AG, Byl N, Findlay AM, et al. Resting state alpha-band functional connectivity and recovery after stroke. Exp Neurol. 2012;237:160–9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Grosse P, Cassidy MJ, Brown P. EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clin Neurophysiol. 2002;113:1523–31.PubMedCrossRefGoogle Scholar
  87. 87.
    Fang W, Chen H, Wang H, Zhang H, Puneet M, Liu M, et al. Essential tremor is associated with disruption of functional connectivity in the ventral intermediate nucleus−motor cortex−cerebellum circuit. Hum Brain Mapp 2015 (in press).Google Scholar
  88. 88.
    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks: structure and dynamics. Physics Reports-Review Section of Physics Letters. 2006;424:175–308.Google Scholar
  89. 89.
    Liu Y, Yu C, Zhang X, Liu J, Duan Y, Alexander-Bloch AF, et al. Impaired long distance functional connectivity and weighted network architecture in Alzheimer’s disease. Cereb Cortex. 2014;24:1422–35.PubMedCrossRefGoogle Scholar
  90. 90.
    Peters J, Taquet M, Vega C, Jeste SS, Fernández IS, Tan J, et al. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Medicine. 2013;11:54.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Sala-Llonch R, Bartrés-Faz D, Junqué C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol. 2015;6:663.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bhanpuri NH, Okamura AM, Bastian AJ. Predictive modeling by the cerebellum improves proprioception. J Neurosci. 2013;33:14301–6.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Molinari M, Restuccia D, Leggio MG. State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum. 2009;8:399–402.PubMedCrossRefGoogle Scholar
  94. 94.
    Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17:241–54.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Schmahmann JD, Ko R, MacMore J. The human basis pontis: motor syndromes and topographic organization. Brain. 2004;127:1269–91.PubMedCrossRefGoogle Scholar
  96. 96.
    Beaulé V, Tremblay S, Théoret H. Interhemispheric control of unilateral movement. Neural Plast. 2012;2012:1–11.CrossRefGoogle Scholar
  97. 97.
    Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE. Anatomy of motor learning. I. Frontal cortex and attention to action. J Neurophysiol. 1997;77:1313–24.PubMedGoogle Scholar
  98. 98.
    Brauns I, Teixeira S, Velasques B, Bittencourt J, Machado S, Cagy M, et al. Changes in the theta band coherence during motor task after hand immobilization. Int Arch Med. 2014;7:51.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Desmurget M, Sirigu A. A parietal-premotor network for movement intention and motor awareness. Trends Cogn Sci. 2009;13:411–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Reineberg AE, Andrews-Hanna JR, Depue BE, Friedman NP, Banich MT. Resting-state networks predict individual differences in common and specific aspects of executive function. Neuroimage. 2015;104:69–78.PubMedCrossRefGoogle Scholar
  101. 101.
    Meola A, Comert A, Yeh FC, Sivakanthan S, Fernandez-Miranda JC. The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosur 2015;124(5):1406–12.Google Scholar
  102. 102.
    Stevens MC, Kiehl KA, Pearlson G, Calhoun VD. Functional neural circuits for mental timekeeping. Hum Brain Mapp. 2007;28:394–408.PubMedCrossRefGoogle Scholar
  103. 103.
    Wu T, Kansaku K, Hallett M. How self-initiated memorized movements become automatic: a functional MRI study. J Neurophysiol. 2004;91:1690–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Carey LM, Seitz RJ. Functional neuroimaging in stroke recovery and neurorehabilitation: conceptual issues and perspectives. Int J Stroke. 2007;2:245–64.PubMedCrossRefGoogle Scholar
  105. 105.
    Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar–prefrontal and cerebellar–parietal functional connectivity. NeuroImage. 2005;28:39–48.PubMedCrossRefGoogle Scholar
  106. 106.
    Manto M, Nowak DA, Shutter DJLG. Coupling between cerebellar hemispheres and sensory processing. Cerebellum. 2006;5:187–88.PubMedCrossRefGoogle Scholar
  107. 107.
    Percheron G, François C, Talbi B, Yelnik J, Fénelon G. The primate motor thalamus. Brain Res Rev. 1996;22:93–181.PubMedCrossRefGoogle Scholar
  108. 108.
    Molinari M, Leggio MG, Dell’Anna ME, Giannetti S, Macchi G. Chemical compartmentation and relationships between calcium-binding protein immunoreactivity and layer-specific cortical caudate-projecting cells in the anterior intralaminar nuclei of the cat. Eur J Neurosci. 1994a;6:299–312.Google Scholar
  109. 109.
    Molinari M, Leggio MG, Dell’Anna ME, Giannetti S, Macchi G. Structural evidence in favour of a relay function for the anterior intralaminar nuclei. In: Minciacchi D, Molinari D, Macchi G, Jones EG, editors. Thalamic networks for relay and modulation. Pergamon Press 1994b. pp 197–208.Google Scholar
  110. 110.
    Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37.PubMedCrossRefGoogle Scholar
  111. 111.
    Halko MA, Farzan F, Eldaief MC, Schmahmann JD, Pascual-Leone A. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J Neurosci. 2014;34:12049–56.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N, Alexander AL, et al. Decreased interhemispheric functional connectivity in autism. Cereb Cortex. 2011;21:1134–46.PubMedCrossRefGoogle Scholar
  113. 113.
    Liu H, Fan G, Xu K, Wang F. Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: a combined resting-state functional MRI and diffusion tensor imaging study. J Magn Reson Imaging. 2011;34:1430–8.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Liu H, Kale Edmiston E, Fan G, Xu K, Zhao B, Shang X, et al. Altered resting-state functional connectivity of the dentate nucleus in Parkinson’s disease. Psychiatry Res. 2013;211:64–71.PubMedCrossRefGoogle Scholar
  115. 115.
    Tang Y, Jiang W, Liao J, Wang W, Luo A. Identifying individuals with antisocial personality disorder using resting-state fMRI. PLoS One. 2013;8:e60652.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Wang Y, Zhu J, Li Q, Li W, Wu N, Zheng Y, et al. Altered fronto-striatal and fronto-cerebellar circuits in heroin-dependent individuals: a resting-state fMRI study. PLoS One. 2013;8:e58098.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Solodkin A, Peri E, Chen EE, Ben Jacob E, Gomez CM. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. Cerebellum. 2011;10:218–32.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wu T, Wang C, Wang J, Hallett M, Zang Y, Chan P. Preclinical and clinical neural network changes in SCA2 parkinsonism. Parkinsonism Relat Disord. 2013;19:158–64.PubMedCrossRefGoogle Scholar
  119. 119.
    Hernandez-Castillo CR, Alcauter S, Galvez V, Barrios FA, Yescas P, Ochoa A et al. Disruption of visual and motor connectivity in spinocerebellar ataxia type 7. Mov Disord 2013 (in press).Google Scholar
  120. 120.
    Reetz K, Dogan I, Rolfs A, Binkofski F, Schulz JB, Laird AR, et al. Investigating function and connectivity of morphometric findings-exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17). Neuroimage. 2012;62:1354–66.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Ros H, Sachdev RN, Yu Y, Sestan N, McCormick DA. Neocortical networks entrain neuronal circuits in cerebellar cortex. J Neurosci. 2009;29:10309–20.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Soteropoulos DS, Baker SN. Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol. 2006;95:1194–206.PubMedCrossRefGoogle Scholar
  123. 123.
    Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17:1476–85.PubMedCrossRefGoogle Scholar
  124. 124.
    Handel B, Thier P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009;29:15126–33.PubMedCrossRefGoogle Scholar
  125. 125.
    Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): motor control, cognition, learning and emotions. Neuroimage. 2014;85(3):918–23.PubMedCrossRefGoogle Scholar
  126. 126.
    Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation: a consensus paper. Cerebellum. 2014;13(1):121–38.PubMedCrossRefGoogle Scholar
  127. 127.
    Mosconi MW, Mohanty S, Greene RK, Cook EH, Vaillancourt DE, Sweeney JA. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder. J Neurosci. 2015;35:2015–25.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Gerard C, Rosenfeld M. Musical expertise and temporal regulation. Annee Psychologique. 1995;95:571–91.CrossRefGoogle Scholar
  129. 129.
    Jackson PL, Lafleur MF, Malouin F, Richards CL, Doyon J. Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage. 2003;20:1171–80.PubMedCrossRefGoogle Scholar
  130. 130.
    Block HJ, Celnik P. Can cerebellar transcranial direct current stimulation become a valuable neurorehabilitation intervention? Expert Rev Neurotherapeutics. 2012;12:1275–7.CrossRefGoogle Scholar
  131. 131.
    Reisman DS, Bastian AJ, Morton SM. Neurophysiologic and rehabilitation insights from the split-belt and other locomotor adaptation paradigms. Phys Ther. 2010;90:187–95.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Schmahmann JD, Dojon J, Toga AW, Petrides M, Evans AC. MRI atlas of the human cerebellum. San Diego, CA: Academic Press; 2000.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fabrizio De Vico Fallani
    • 1
    • 2
  • Silvia Clausi
    • 3
    • 4
  • Maria Leggio
    • 3
    • 4
  • Mario Chavez
    • 2
  • Miguel Valencia
    • 5
    • 6
  • Anton Giulio Maglione
    • 3
  • Fabio Babiloni
    • 7
    • 3
  • Febo Cincotti
    • 8
    • 3
  • Donatella Mattia
    • 3
  • Marco Molinari
    • 3
  1. 1.Inria ParisARAMIS project-teamParisFrance
  2. 2.ICM, CNRS UMR 7225, Inserm U1127Sorbonne Universités UPMC S1127ParisFrance
  3. 3.IRCCS “Fondazione Santa Lucia”RomeItaly
  4. 4.Department of PsychologySapienza University of RomeRomeItaly
  5. 5.Neurosciences Area, CIMAUniversidad de NavarraPamplonaSpain
  6. 6.IdiSNANavarra Institute for Health ResearchPamplonaSpain
  7. 7.Departement of Molecular MedicineSapienza University of RomeRomeItaly
  8. 8.DIAGSapienza University of RomeRomeItaly

Personalised recommendations