The Cerebellum

, Volume 16, Issue 2, pp 340–347 | Cite as

Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1

  • Marija Cvetanovic
  • Yuan-Shih Hu
  • Puneet OpalEmail author
Original Paper


Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (Q) repeat tract in the protein ataxin-1 (ATXN1). Beginning as a cerebellar ataxic disorder, SCA1 progresses to involve the cerebral cortex, hippocampus, and brainstem. Using SCA1 knock-in mice that mirror the complexity of the human disease, we report a significant decrease in the capacity of adult neuronal progenitor cells (NPCs) to proliferate. Remarkably, a decrease in NPCs proliferation can be observed in vitro, outside the degenerative milieu of surrounding neurons or glia, demonstrating that mutant ATXN1 acting cell autonomously within progenitor cells interferes with their ability to proliferate. Our findings suggest that compromised adult neurogenesis contributes to the progressive pathology of the disease particularly in areas such as the hippocampus and cerebral cortex where stem cells provide neurotropic factors and participate in adult neurogenesis. These findings not only shed light on the biology of the disease but also have therapeutic implications in any future stem cell-based clinical trials.


Spinocerebellar ataxia type 1 SCA1 Neurogenesis Proliferation 



We thank the members of the Opal lab for their intellectual input. We thank Jessica Huang for her help with the histopathology and mouse genotyping. MC was supported by startup funds for the Institute for the Translational Neuroscience and Minnesota Medical Foundation, while PO received grant support from the US National Institutes of Health (1R01 NS062051 and 1R01NS082351).

Compliance with Ethical Standards

All animal experiments were performed in compliance with National Institutes of Health’s Guide for the Care and Use of Laboratory Animals and the Northwestern University Institutional Animal Care and Use Committee.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Orr H, Chung M-y, Banfi S, Kwiatkowski Jr TJ, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide (CAG) repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4:221–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Opal P, Zoghbi HY. Diseases of the nervous system. Diseases of the Nervous System. 2002;II:1880-95.Google Scholar
  3. 3.
    Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci. 2007;30:575–621.CrossRefPubMedGoogle Scholar
  4. 4.
    Li X, Li H, Li XJ. Intracellular degradation of misfolded proteins in polyglutamine neurodegenerative diseases. Brain Res Rev. 2008;59(1):245–52.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY. Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci. 2000;3(2):157–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Serra HG, Byam CE, Lande JD, Tousey SK, Zoghbi HY, Orr HT. Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum Mol Genet. 2004;13(20):2535–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Riley BE, Orr HT. Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev. 2006;20(16):2183–92.CrossRefPubMedGoogle Scholar
  8. 8.
    Cvetanovic M, Kular RK, Opal P. LANP mediates neuritic pathology in Spinocerebellar ataxia type 1. Neurobiol Dis. 2012;48(3):526–32.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K, et al. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron. 2002;34(6):905–19.CrossRefPubMedGoogle Scholar
  10. 10.
    Bonaguidi MA, Peng CY, McGuire T, Falciglia G, Gobeske KT, Czeisler C, et al. Noggin expands neural stem cells in the adult hippocampus. J Neurosci Off J Soc Neurosci. 2008;28(37):9194–204.CrossRefGoogle Scholar
  11. 11.
    Demars M, Hu YS, Gadadhar A, Lazarov O. Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice. J Neurosci Res. 2010;88(10):2103–17.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hu YS, Xu P, Pigino G, Brady ST, Larson J, Lazarov O. Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer’s disease-linked APPswe/PS1DeltaE9 mice. FASEB J Off Publ Fed Am Soc Exp Biol. 2010;24(6):1667–81.Google Scholar
  13. 13.
    Meyers EA, Gobeske KT, Bond AM, Jarrett JC, Peng CY, Kessler JA. Increased bone morphogenetic protein signaling contributes to age-related declines in neurogenesis and cognition. Neurobiol Aging. 2016;38:164–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Venkatraman A, Hu YS, Didonna A, Cvetanovic M, Krbanjevic A, Bilesimo P, et al. The histone deacetylase HDAC3 is essential for Purkinje cell function, potentially complicating the use of HDAC inhibitors in SCA1. Hum Mol Genet. 2014;23(14):3733–45.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cvetanovic M, Rooney RJ, Garcia JJ, Toporovskaya N, Zoghbi HY, Opal P. The role of LANP and ataxin 1 in E4F-mediated transcriptional repression. EMBO Rep. 2007;8(7):671–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hu YS, Long N, Pigino G, Brady ST, Lazarov O. Molecular mechanisms of environmental enrichment: impairments in Akt/GSK3beta, neurotrophin-3 and CREB signaling. PLoS One. 2013;8(5), e64460.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kitamura T, Inokuchi K. Role of adult neurogenesis in hippocampal-cortical memory consolidation. Mol Brain. 2014;7:13.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132(4):645–60.CrossRefPubMedGoogle Scholar
  19. 19.
    Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, Richman R, et al. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007;4(5), e182.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cvetanovic M, Patel JM, Marti HH, Kini AR, Opal P. Vascular endothelial growth factor ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. Nat Med. 2011;17(11):1445–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci. 2005;21(1):1–14.CrossRefPubMedGoogle Scholar
  22. 22.
    Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol. 2003;467(1):1–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta. 2013;1830(2):2435–48.CrossRefPubMedGoogle Scholar
  24. 24.
    Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A. 2002;99(18):11946–50.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature. 1990;347(6295):762–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Kirschenbaum B, Goldman SA. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc Natl Acad Sci U S A. 1995;92(1):210–4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Maric D, Fiorio Pla A, Chang YH, Barker JL. Self-renewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors. J Neurosci Off J Soc Neurosci. 2007;27(8):1836–52.CrossRefGoogle Scholar
  28. 28.
    Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci Off J Soc Neurosci. 1999;19(19):8487–97.Google Scholar
  29. 29.
    Erlandsson A, Brannvall K, Gustafsdottir S, Westermark B, Forsberg-Nilsson K. Autocrine/paracrine platelet-derived growth factor regulates proliferation of neural progenitor cells. Cancer Res. 2006;66(16):8042–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Arsenijevic Y, Weiss S, Schneider B, Aebischer P. Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci Off J Soc Neurosci. 2001;21(18):7194–202.Google Scholar
  31. 31.
    Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C. Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci Off J Soc Neurosci. 2007;27(25):6771–80.CrossRefGoogle Scholar
  32. 32.
    Wang R, Dineley KT, Sweatt JD, Zheng H. Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience. 2004;126(2):305–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Wen PH, Hof PR, Chen X, Gluck K, Austin G, Younkin SG, et al. The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol. 2004;188(2):224–37.CrossRefPubMedGoogle Scholar
  34. 34.
    Kohl Z, Winner B, Ubhi K, Rockenstein E, Mante M, Munch M, et al. Fluoxetine rescues impaired hippocampal neurogenesis in a transgenic A53T synuclein mouse model. Eur J Neurosci. 2012;35(1):10–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Winner B, Melrose HL, Zhao C, Hinkle KM, Yue M, Kent C, et al. Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice. Neurobiol Dis. 2011;41(3):706–16.CrossRefPubMedGoogle Scholar
  36. 36.
    Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, et al. Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging. 2008;29(6):913–25.CrossRefPubMedGoogle Scholar
  37. 37.
    Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci. 2004;7(7):726–35.CrossRefPubMedGoogle Scholar
  38. 38.
    Gil JM, Mohapel P, Araujo IM, Popovic N, Li JY, Brundin P, et al. Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol Dis. 2005;20(3):744–51.CrossRefPubMedGoogle Scholar
  39. 39.
    Kohl Z, Regensburger M, Aigner R, Kandasamy M, Winner B, Aigner L, et al. Impaired adult olfactory bulb neurogenesis in the R6/2 mouse model of Huntington’s disease. BMC Neurosci. 2010;11:114.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Simpson JM, Gil-Mohapel J, Pouladi MA, Ghilan M, Xie Y, Hayden MR, et al. Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease. Neurobiol Dis. 2011;41(2):249–60.CrossRefPubMedGoogle Scholar
  41. 41.
    Phillips W, Morton AJ, Barker RA. Abnormalities of neurogenesis in the R6/2 mouse model of Huntington’s disease are attributable to the in vivo microenvironment. J Neurosci Off J Soc Neurosci. 2005;25(50):11564–76.CrossRefGoogle Scholar
  42. 42.
    Liu Z, Martin LJ. The adult neural stem and progenitor cell niche is altered in amyotrophic lateral sclerosis mouse brain. J Comp Neurol. 2006;497(3):468–88.CrossRefPubMedGoogle Scholar
  43. 43.
    DiFebo F, Curti D, Botti F, Biella G, Bigini P, Mennini T, et al. Neural precursors (NPCs) from adult L967Q mice display early commitment to “in vitro” neuronal differentiation and hyperexcitability. Exp Neurol. 2012;236(2):307–18.CrossRefPubMedGoogle Scholar
  44. 44.
    Donato SD, Mariotti C, Taroni F. Spinocerebellar ataxia type 1. Handb Clin Neurol. 2012;103:399–421.CrossRefPubMedGoogle Scholar
  45. 45.
    Cho KO, Lybrand ZR, Ito N, Brulet R, Tafacory F, Zhang L, et al. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun. 2015;6:6606.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science (New York, NY). 2004;304(5675):1338–40.CrossRefGoogle Scholar
  47. 47.
    Cvetanovic M, Ingram M, Orr H, Opal P. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience. 2015;289:289–99.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci. 2001;2(4):287–93.CrossRefPubMedGoogle Scholar
  49. 49.
    Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, et al. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci Off J Soc Neurosci. 2009;29(42):13126–35.CrossRefGoogle Scholar
  50. 50.
    Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H. Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum (Lond, Engl). 2014;13(3):323–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of NeuroscienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoUSA
  3. 3.Department of Cell and Molecular BiologyNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations