The Cerebellum

, Volume 16, Issue 1, pp 95–102 | Cite as

Impaired Tilt Suppression of Post-Rotatory Nystagmus and Cross-Coupled Head-Shaking Nystagmus in Cerebellar Lesions: Image Mapping Study

  • Sun-Uk Lee
  • Jeong-Yoon Choi
  • Hyo-Jung Kim
  • Jeong-Jin Park
  • David S. Zee
  • Ji-Soo KimEmail author
Original Paper


We sought to determine the cerebellar structures responsible for tilt suppression of post-rotatory nystagmus. We investigated ocular motor findings and MRI lesions in 73 patients with isolated cerebellar lesions who underwent recording of the vestibulo-ocular reflex (VOR) using rotatory chair tests. Tilt suppression of post-rotatory nystagmus was diminished in 27 patients (27/73, 37.0 %). The gains of the VOR and the TCs of per- and post-rotatory nystagmus did not differ between the patients with diminished and with normal tilt suppression. The patients with impaired tilt suppression showed perverted (“cross-coupled”) head-shaking nystagmus (pHSN) and central positional nystagmus (CPN) more frequently than those with normal responses. Tilt suppression was impaired in five (71.4 %) of the seven patients with isolated nodulus and uvular infarction. Probabilistic lesion-mapping analysis showed that the nodulus and uvula are responsible for tilt suppression. Impaired tilt suppression may be ascribed to disruption of cerebellar contribution to the vestibular velocity-storage mechanism, which integrates information from the semicircular canals and otolith organs to help derive the brain’s estimate of the head orientation relative to the pull of gravity.


Vertigo Nystagmus Vestibulo-ocular reflex Nodulus Uvula 



This study was supported by a grant of the Korea Healthcare technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI10C2020).

Author Contributions

Dr. Lee wrote the manuscript and analyzed and interpreted the data.

Drs. Choi, Park, Koo, H.J. Kim, and Zee analyzed and interpreted the data and revised the manuscript.

Dr. J.S. Kim conducted the design, and conceptualized the study, interpreted the data, and revised the manuscript.

Compliance with Ethical Standards

Study Ethics

All experiments followed the tenets of the Declaration of Helsinki and this study was approved by the Institutional Review Board of Seoul National University Bundang Hospital (B-1505-298-107).

Conflict of Interest

The authors declare that they have no conflict of interest.


Drs. Lee, Choi, Park, and Koo and H.J. Kim report no disclosure.

Dr. J.S. Kim serves as an associate editor of Frontiers in Neuro-otology and on the editorial boards of the Journal of Korean Society of Clinical Neurophysiology, Journal of Clinical Neurology, Frontiers in Neuro-ophthalmology, Journal of Neuro-ophthalmology, Journal of Vestibular Research, Journal of Neurology, and Medicine and received research support from SK Chemicals, Co. Ltd.

Dr. Zee receives research support from the National Institutes of Health and is an Associate Editor of Frontiers in Neuro-otology and a member of the Editorial Board of The Cerebellum. He received speaker’s honoraria from Abbott, Micromed, Sun pharmaceuticals, and the American Academy of Neurology.


  1. 1.
    Baloh RW, Kerber K. Baloh and Honrubia’s clinical neurophysiology of the vestibular system. New York: Oxford University Press; 2010.Google Scholar
  2. 2.
    Cohen B, Henn V, Raphan T, Dennett D. Velocity storage, nystagmus, and visual-vestibular interactions in humans. Ann N Y Acad Sci. 1981;374(1):421–33.CrossRefPubMedGoogle Scholar
  3. 3.
    Dai M, Klein A, Cohen B, Raphan T. Model-based study of the human cupular time constant. J Vestib Res. 1998;9(4):293–301.Google Scholar
  4. 4.
    Leigh RJ, Zee DS. The neurology of eye movements. 4th ed. New York: Oxford University Press; 2006.Google Scholar
  5. 5.
    Cohen B, Matsuo V, Raphan T. Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol. 1977;270:321–44.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Laurens J, Angelaki DE. The functional significance of velocity storage and its dependence on gravity. Exp Brain Res. 2011;210:407–22.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Solomon D, Cohen B. Stabilization of gaze during circular locomotion in darkness. II. Contribution of velocity storage to compensatory eye and head nystagmus in the running monkey. J Neurophysiol. 1992;67:1158–70.PubMedGoogle Scholar
  8. 8.
    Raphan T, Sturm D. Modeling the spatiotemporal organization of velocity storage in the vestibuloocular reflex by optokinetic studies. J Neurophysiol. 1991;66:1410–21.PubMedGoogle Scholar
  9. 9.
    Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228:199–202.CrossRefPubMedGoogle Scholar
  10. 10.
    Raphan T, Cohen B, Henn V. Effects of gravity on rotatory nystagmus in monkeys. Ann N Y Acad Sci. 1981;374:44–55.CrossRefPubMedGoogle Scholar
  11. 11.
    Kushiro K, Dai M, Kunin M, Yakushin SB, Cohen B, Raphan T. Compensatory and orienting eye movements induced by off-vertical axis rotation (OVAR) in monkeys. J Neurophysiol. 2002;88:2445–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Ann N Y Acad Sci. 1999;871:94–122.CrossRefPubMedGoogle Scholar
  13. 13.
    Wiest G, Deecke L, Trattnig S, Mueller C. Abolished tilt suppression of the vestibulo-ocular reflex caused by a selective uvulo-nodular lesion. Neurology. 1999;52(2):417–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Moon IS, Kim JS, Choi KD, Kim MJ, Oh SY, Lee H, et al. Isolated nodular infarction. Stroke. 2009;40(2):487–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Hain T, Zee D, Maria B. Tilt suppression of vestibulo-ocular reflex in patients with cerebellar lesions. Acta Otolaryngol. 1988;105:13–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Huh YE, Kim JS. Bedside evaluation of dizzy patients. J Clin Neurol. 2013;9:203–13.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Choi J-Y, Kim JH, Kim HJ, Glasauer S, Kim J-S. Central paroxysmal positional nystagmus characteristics and possible mechanisms. Neurology. 2015;84:2238–46.CrossRefPubMedGoogle Scholar
  18. 18.
    Choi KD, Oh SY, Park SH, Kim JH, Koo JW, Kim JS. Head-shaking nystagmus in lateral medullary infarction patterns and possible mechanisms. Neurology. 2007;68(17):1337–44.CrossRefPubMedGoogle Scholar
  19. 19.
    Yang Y, Kim JS, Kim S, Kim YK, Kwak YT, Han IW. Cerebellar hypoperfusion during transient global amnesia: an MRI and oculographic study. J Clin Neurol. 2009;5(2):74–80.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Choi KD, Kim JS. Head‐shaking nystagmus in central vestibulopathies. Ann N Y Acad Sci. 2009;1164:338–43.CrossRefPubMedGoogle Scholar
  21. 21.
    Jeong SH, Oh SY, Kim HJ, Koo JW, Kim JS. Vestibular dysfunction in migraine: effects of associated vertigo and motion sickness. J Neurol. 2010;257(6):905–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage. 2006;33(1):127–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Huh YE, Kim JS. Patterns of spontaneous and head-shaking nystagmus in cerebellar infarction: imaging correlations. Brain. 2011;134(12):3662–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Voogd J, Gerrits NM, Ruigrok TJ. Organization of the vestibulocerebellum. Ann N Y Acad Sci. 1996;781(1):553–79.CrossRefPubMedGoogle Scholar
  25. 25.
    Shojaku H, Sato Y, Ikarashi K, Kawasaki T. Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res. 1987;416(1):100–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Shaikh AG, Palla A, Marti S, Olasagasti I, Optican LM, Zee DS, et al. Role of cerebellum in motion perception and vestibulo-ocular reflex—similarities and disparities. Cerebellum. 2013;12(1):97–107.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Carleton SC, Carpenter MB. Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res. 1983;278(1):29–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Angelaki DE, Hess BJ. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol. 1995;73:1729–51.PubMedGoogle Scholar
  29. 29.
    Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron. 2007;54(6):973–85.CrossRefPubMedGoogle Scholar
  30. 30.
    Meng H, Blázquez PM, Dickman JD, Angelaki DE. Diversity of vestibular nuclei neurons targeted by cerebellar nodulus inhibition. J Physiol. 2014;592:171–88.CrossRefPubMedGoogle Scholar
  31. 31.
    Wearne S, Raphan T, Cohen B. Nodulo-uvular control of central vestibular dynamics determines spatial orientation of the angular vestibulo-ocular reflexa. Ann N Y Acad Sci. 1996;781:364–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Solomon D, Cohen B. Stimulation of the nodulus and uvula discharges velocity storage in the vestibulo-ocular reflex. Exp Brain Res. 1994;102:57–68.CrossRefPubMedGoogle Scholar
  33. 33.
    Furman JM, Wall C, Pang D. Vestibular function in periodic alternating nystagmus. Brain. 1990;113(5):1425–39.CrossRefPubMedGoogle Scholar
  34. 34.
    Shaikh AG. Motion perception without nystagmus—a novel manifestation of cerebellar stroke. J Stroke Cerebrovasc Dis. 2014;23:1148–56.CrossRefPubMedGoogle Scholar
  35. 35.
    Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol. 2011;105:3034–41.CrossRefPubMedGoogle Scholar
  36. 36.
    Walker MF, Zee DS. Directional abnormalities of vestibular and optokinetic responses in cerebellar disease. Ann N Y Acad Sci. 1999;871:205–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Palla A, Marti S, Straumann D. Head-shaking nystagmus depends on gravity. J Assoc Res Otolaryngol. 2005;6(1):1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Waespe W, Büttner U, Henn V. Visual-vestibular interaction in the flocculus of the alert monkey. Exp Brain Res. 1981;43(3–4):337–48.CrossRefPubMedGoogle Scholar
  39. 39.
    Park HK, Kim JS, Strupp M, Zee DS. Isolated floccular infarction: impaired vestibular responses to horizontal head impulse. J Neurol. 2013;260(6):1576–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Waespe W, Cohen B, Raphan T. Role of the flocculus and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res. 1983;50:9–33.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sun-Uk Lee
    • 1
  • Jeong-Yoon Choi
    • 2
  • Hyo-Jung Kim
    • 3
  • Jeong-Jin Park
    • 4
  • David S. Zee
    • 5
  • Ji-Soo Kim
    • 2
    Email author
  1. 1.Department of Neurology, Ajou University School of MedicineAjou University HospitalSuwonSouth Korea
  2. 2.Department of Neurology, Seoul National University College of MedicineSeoul National University Bundang HospitalSeongnam-siSouth Korea
  3. 3.Department of Biomedical Laboratory ScienceKyungdong UniversityGoseong-gunSouth Korea
  4. 4.Department of Neurology, Konkuk University School of MedicineKonkuk University HospitalSeoulSouth Korea
  5. 5.Department of Neurology, Otolaryngology Head and Neck Surgery, Neuroscience, and OphthalmologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations