The Cerebellum

, Volume 15, Issue 3, pp 357–368 | Cite as

Emotion and Theory of Mind in Schizophrenia—Investigating the Role of the Cerebellum

  • Omar Mothersill
  • Charlotte Knee-Zaska
  • Gary Donohoe


Social cognitive dysfunction, including deficits in facial emotion recognition and theory of mind, is a core feature of schizophrenia and more strongly predicts functional outcome than neurocognition alone. Although traditionally considered to play an important role in motor coordination, the cerebellum has been suggested to play a role in emotion processing and theory of mind, and also shows structural and functional abnormalities in schizophrenia. The aim of this systematic review was to investigate the specific role of the cerebellum in emotion and theory of mind deficits in schizophrenia using previously published functional neuroimaging studies. PubMed and PsycINFO were used to search for all functional neuroimaging studies reporting altered cerebellum activity in schizophrenia patients during emotion processing or theory of mind tasks, published until December 2014. Overall, 14 functional neuroimaging studies were retrieved. Most emotion studies reported lower cerebellum activity in schizophrenia patients relative to healthy controls. In contrast, the theory of mind studies reported mixed findings. Altered activity was observed across several posterior cerebellar regions involved in emotion and cognition. Weaker cerebellum activity in schizophrenia patients relative to healthy controls during emotion processing may contribute to blunted affect and reduced ability to recognise emotion in others. This research could be expanded by examining the relationship between cerebellum function, symptomatology and behaviour, and examining cerebellum functional connectivity in patients during emotion and theory of mind tasks.


Social cognition Emotion Schizophrenia Cerebellum Neuroimaging 



This work was supported by a Science Foundation Ireland Research Investigator project awarded to GD (SFI: 12.IP.1359).

Conflict of Interest

All authors have declared that there are no conflicts of interest in relation to the subject of this study.


  1. 1.
    Van Overwalle F. Social cognition and the brain: a meta‐analysis. Hum Brain Mapp. 2009;30(3):829–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Couture SM, Penn DL, Roberts DL. The functional significance of social cognition in schizophrenia: a review. Schizophr Bull. 2006;32 suppl 1:S44–63.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fett A-KJ, Viechtbauer W, Dominguez M-d-G, Penn DL, van Os J, Krabbendam L. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci Biobehav Rev. 2011;35(3):573–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Brady LS, Insel TR. Translating discoveries into medicine: psychiatric drug development in 2011. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2012;37(1):281–3.CrossRefGoogle Scholar
  5. 5.
    Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatr. 2010;167(7):748–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Walter H, Schnell K, Erk S, Arnold C, Kirsch P, Esslinger C, et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol Psychiatry. 2011;16(4):462–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry. 2012;71(4):286–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage. 2014;86:554–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Kohler CG, Walker JB, Martin EA, Healey KM, Moberg PJ. Facial emotion perception in schizophrenia: a meta-analytic review. Schizophr Bull. 2010;36(5):1009–19.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Aleman A, Kahn RS. Strange feelings: do amygdala abnormalities dysregulate the emotional brain in schizophrenia? Prog Neurobiol. 2005;77(5):283–98.PubMedGoogle Scholar
  11. 11.
    Gur R, Nimgaonkar V, Almasy L, Calkins M, Ragland J, Pogue-Geile M, et al. Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia. Am J Psychiatr. 2007;164(5):813–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Aghevli MA, Blanchard JJ, Horan WP. The expression and experience of emotion in schizophrenia: a study of social interactions. Psychiatry Res. 2003;119(3):261–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Goldman AI, Margolis E, Samuels R, Stich S. Theory of mind. Oxford handbook of philosophy and cognitive science. Oxford: Oxford University Press; 2012:402-24.Google Scholar
  14. 14.
    Schnell K, Bluschke S, Konradt B, Walter H. Functional relations of empathy and mentalizing: an fMRI study on the neural basis of cognitive empathy. Neuroimage. 2011;54(2):1743–54.PubMedCrossRefGoogle Scholar
  15. 15.
    Csibra G. Goal attribution to inanimate agents by 6.5-month-old infants. Cognition. 2008;107(2):705–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK. Identification of separable cognitive factors in schizophrenia. Schizophr Res. 2004;72(1):29–39.PubMedCrossRefGoogle Scholar
  17. 17.
    McGurk SR, Twamley EW, Sitzer DI, McHugo GJ, Mueser KT. A meta-analysis of cognitive remediation in schizophrenia. Am J Psychiatry. 2007;164(12):1791–802.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lewandowski KE, Cohen BM, Keshavan MS, Öngür D. Relationship of neurocognitive deficits to diagnosis and symptoms across affective and non-affective psychoses. Schizophr Res. 2011;133(1):212–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Baddeley A. Working memory. Science. 1992;255(5044):556–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Süß H-M, Oberauer K, Wittmann WW, Wilhelm O, Schulze R. Working-memory capacity explains reasoning ability—and a little bit more. Intelligence. 2002;30(3):261–88.CrossRefGoogle Scholar
  21. 21.
    Baddeley A. Working memory and language: an overview. J Commun Disord. 2003;36(3):189–208.PubMedCrossRefGoogle Scholar
  22. 22.
    Colom R, Rebollo I, Palacios A, Juan-Espinosa M, Kyllonen PC. Working memory is (almost) perfectly predicted by g. Intelligence. 2004;32(3):277–96.CrossRefGoogle Scholar
  23. 23.
    Bühner M, Kröner S, Ziegler M. Working memory, visual-spatial-intelligence and their relationship to problem-solving. Intelligence. 2008;36(6):672–80.CrossRefGoogle Scholar
  24. 24.
    Colom R, Abad FJ, Quiroga MÁ, Shih PC, Flores-Mendoza C. Working memory and intelligence are highly related constructs, but why? Intelligence. 2008;36(6):584–606.CrossRefGoogle Scholar
  25. 25.
    Thach WT, Goodkin H, Keating J. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15(1):403–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17(5):241–54.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78.PubMedCrossRefGoogle Scholar
  28. 28.
    Baillieux H, De Smet HJ, Dobbeleir A, Paquier PF, De Deyn PP, Mariën P. Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex. 2010;46(7):869–79.PubMedCrossRefGoogle Scholar
  29. 29.
    Manto M, Mariën P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2(2):1–5.Google Scholar
  30. 30.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.PubMedCrossRefGoogle Scholar
  31. 31.
    Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130(10):2646–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedCrossRefGoogle Scholar
  33. 33.
    Van Overwalle, F, Baetens, K, Mariën, P, Vandekerckhove, M. Cerebellar areas dedicated to Social Cognition? A comparison of meta-analytic and connectivity results. Soc Neurosci 2015; 10(4):337-44.Google Scholar
  34. 34.
    Riedel MC, Ray KL, Dick AS, Sutherland MT, Hernandez Z, Fox PM, et al. Meta-analytic connectivity and behavioral parcellation of the human cerebellum. Neuroimage. 2015;117:327–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto LL, Hichwa RD, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45(6):1331–41.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Buckner R, Krienen F, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Andreasen NC, O'Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto L, et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci. 1996;93(18):9985–90.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Crespo‐Facorro B, Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, et al. Neural basis of novel and well‐learned recognition memory in schizophrenia: a positron emission tomography study. Hum Brain Mapp. 2001;12(4):219–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Walter H, Vasic N, Höse A, Spitzer M, Wolf RC. Working memory dysfunction in schizophrenia compared to healthy controls and patients with depression: evidence from event-related fMRI. Neuroimage. 2007;35(4):1551–61.PubMedCrossRefGoogle Scholar
  42. 42.
    Müller JL, Röder C, Schuierer G, Klein HE. Subcortical overactivation in untreated schizophrenic patients: a functional magnetic resonance image finger‐tapping study. Psychiatry Clin Neurosci. 2002;56(1):77–84.PubMedCrossRefGoogle Scholar
  43. 43.
    Volkow ND, Levy A, Brodie JD, Wolf AP, Cancro R, Van Gelder P, et al. Low cerebellar metabolism in medicated patients with chronic schizophrenia. Am J Psychiatry. 1992;149:686–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Liu H, Fan G, Xu K, Wang F. Changes in cerebellar functional connectivity and anatomical connectivity in schizophrenia: a combined resting‐state functional MRI and diffusion tensor imaging study. J Magn Reson Imaging. 2011;34(6):1430–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3(2):89–97.PubMedGoogle Scholar
  46. 46.
    Tran KD, Smutzer GS, Doty RL, Arnold SE. Reduced Purkinje cell size in the cerebellar vermis of elderly patients with schizophrenia. Am J Psychiatr. 1998;155(9):1288–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Okugawa G, Nobuhara K, Sugimoto T, Kinoshita T. Diffusion tensor imaging study of the middle cerebellar peduncles in patients with schizophrenia. Cerebellum. 2005;4(2):123–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Kyriakopoulos M, Vyas NS, Barker GJ, Chitnis XA, Frangou S. A diffusion tensor imaging study of white matter in early-onset schizophrenia. Biol Psychiatry. 2008;63(5):519–23.PubMedCrossRefGoogle Scholar
  49. 49.
    Wassink TH, Andreasen NC, Nopoulos P, Flaum M. Cerebellar morphology as a predictor of symptom and psychosocial outcome in schizophrenia. Biol Psychiatry. 1999;45(1):41–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Pedersen A, Koelkebeck K, Brandt M, Wee M, Kueppers KA, Kugel H, et al. Theory of mind in patients with schizophrenia: is mentalizing delayed? Schizophr Res. 2012;137(1):224–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Lakis N, Jiménez JA, Mancini-Marïe A, Stip E, Lavoie ME, Mendrek A. Neural correlates of emotional recognition memory in schizophrenia: effects of valence and arousal. Psychiatry Res Neuroimaging. 2011;194(3):245–56.PubMedCrossRefGoogle Scholar
  52. 52.
    Mendrek A, Jiménez J, Mancini-Marïe A, Fahim C, Stip E. Correlations between sadness-induced cerebral activations and schizophrenia symptoms: an fMRI study of sex differences. Eur Psychiatry. 2011;26(5):320–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Surguladze SA, Chu EM, Marshall N, Evans A, Anilkumar AP, Timehin C, et al. Emotion processing in schizophrenia: fMRI study of patients treated with risperidone long-acting injections or conventional depot medication. J Psychopharmacol. 2011;25(6):722–33.PubMedCrossRefGoogle Scholar
  54. 54.
    Mendrek A, Mancini-Marië A, Fahim C, Stip E. Sex differences in the cerebral function associated with processing of aversive stimuli by schizophrenia patients. Aust N Z J Psychiatry. 2007;41(2):136–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Stip E, Fahim C, Liddle P, Mancini-Marïe A, Mensour B, Bentaleb LA, et al. Neural correlates of sad feelings in schizophrenia with and without blunted affect. Can J Psychiatr. 2005;50:909–17.Google Scholar
  56. 56.
    Brunet E, Sarfati Y, Hardy-Baylé M-C, Decety J. Abnormalities of brain function during a nonverbal theory of mind task in schizophrenia. Neuropsychologia. 2003;41(12):1574–82.PubMedCrossRefGoogle Scholar
  57. 57.
    Mothersill O, Morris DW, Kelly S, Rose EJ, Bokde A, Reilly R, et al. Altered medial prefrontal activity during dynamic face processing in schizophrenia spectrum patients. Schizophr Res. 2014;157(1-3):225–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Andreasen NC, Calage CA, O'Leary DS. Theory of mind and schizophrenia: a positron emission tomography study of medication-free patients. Schizophr Bull. 2008;34(4):708–19.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Paradiso S, Andreasen NC, Crespo-Facorro B, O’Leary DS, Watkins GL, Ponto LLB, et al. Emotions in unmedicated patients with schizophrenia during evaluation with positron emission tomography. Am J Psychiatr. 2003;160(10):1775–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Crespo-Facorro B, Paradiso S, Andreasen NC, O'Leary DS, Watkins GL, Ponto LL, et al. Neural mechanisms of anhedonia in schizophrenia: a PET study of response to unpleasant and pleasant odors. JAMA. 2001;286(4):427–35.PubMedCrossRefGoogle Scholar
  61. 61.
    Taylor SF, Phan KL, Britton JC, Liberzon I. Neural response to emotional salience in schizophrenia. Neuropsychopharmacol Off Publ Am College Neuropsychopharmacol. 2005;30(5):984–95.CrossRefGoogle Scholar
  62. 62.
    Takahashi H, Koeda M, Oda K, Matsuda T, Matsushima E, Matsuura M, et al. An fMRI study of differential neural response to affective pictures in schizophrenia. Neuroimage. 2004;22(3):1247–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Fahim C, Stip E, Mancini-Marı̈e A, Beauregard M. Genes and memory: the neuroanatomical correlates of emotional memory in monozygotic twin discordant for schizophrenia. Brain Cogn. 2004;55(2):250–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005;25(4):1325–35.PubMedCrossRefGoogle Scholar
  65. 65.
    Eickhoff SB, Heim S, Zilles K, Amunts K. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage. 2006;32(2):570–82.PubMedCrossRefGoogle Scholar
  66. 66.
    Eickhoff SB, Paus T, Caspers S, Grosbras M-H, Evans AC, Zilles K, et al. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage. 2007;36(3):511–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 2009;46(1):39–46.PubMedCrossRefGoogle Scholar
  68. 68.
    Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT. Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: a random‐effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp. 2009;30(9):2907–26.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P. Minimizing within‐experiment and within‐group effects in activation likelihood estimation meta‐analyses. Hum Brain Mapp. 2012;33(1):1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT. Activation likelihood estimation revisited. Neuroimage. 2012;59(3):2349–61.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Laird AR, Fox M, Price CJ, Glahn DC, Uecker AM, Lancaster JL, et al. ALE meta‐analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp. 2005;25(1):155–64.PubMedCrossRefGoogle Scholar
  72. 72.
    Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64(2):81–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, et al. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1):91–100.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Stevens JS, Hamann S. Sex differences in brain activation to emotional stimuli: a meta-analysis of neuroimaging studies. Neuropsychologia. 2012;50(7):1578–93.PubMedCrossRefGoogle Scholar
  75. 75.
    Singer T, Seymour B, O'Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303(5661):1157–62.PubMedCrossRefGoogle Scholar
  76. 76.
    Stephan KE, Friston KJ, Frith CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509–27.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, et al. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry. 2001;158(11):1809–17.PubMedCrossRefGoogle Scholar
  78. 78.
    Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, et al. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry. 2005;62(4):379–86.PubMedCrossRefGoogle Scholar
  79. 79.
    Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry. 2002;51(12):1008–11.PubMedCrossRefGoogle Scholar
  80. 80.
    Breakspear M, Terry JR, Friston KJ, Harris AW, Williams LM, Brown K, et al. A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode schizophrenia. Neuroimage. 2003;20(1):466–78.PubMedCrossRefGoogle Scholar
  81. 81.
    Das P, Kemp AH, Flynn G, Harris AW, Liddell BJ, Whitford TJ, et al. Functional disconnections in the direct and indirect amygdala pathways for fear processing in schizophrenia. Schizophr Res. 2007;90(1):284–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Omar Mothersill
    • 1
    • 2
    • 3
  • Charlotte Knee-Zaska
    • 1
    • 2
    • 3
  • Gary Donohoe
    • 1
    • 2
    • 3
  1. 1.CogGene Research Group, School of PsychologyNational University of Ireland GalwayGalwayIreland
  2. 2.Neuropsychiatric Genetics Group, Department of Psychiatry and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
  3. 3.School of PsychologyNational University of Ireland GalwayGalwayIreland

Personalised recommendations