The Cerebellum

, Volume 15, Issue 3, pp 369–391 | Cite as

Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome

  • Florian Bodranghien
  • Amy Bastian
  • Carlo Casali
  • Mark Hallett
  • Elan D. Louis
  • Mario MantoEmail author
  • Peter Mariën
  • Dennis A. Nowak
  • Jeremy D. Schmahmann
  • Mariano Serrao
  • Katharina Marie Steiner
  • Michael Strupp
  • Caroline Tilikete
  • Dagmar Timmann
  • Kim van Dun
Consensus Paper


The cerebellum is involved in sensorimotor operations, cognitive tasks and affective processes. Here, we revisit the concept of the cerebellar syndrome in the light of recent advances in our understanding of cerebellar operations. The key symptoms and signs of cerebellar dysfunction, often grouped under the generic term of ataxia, are discussed. Vertigo, dizziness, and imbalance are associated with lesions of the vestibulo-cerebellar, vestibulo-spinal, or cerebellar ocular motor systems. The cerebellum plays a major role in the online to long-term control of eye movements (control of calibration, reduction of eye instability, maintenance of ocular alignment). Ocular instability, nystagmus, saccadic intrusions, impaired smooth pursuit, impaired vestibulo-ocular reflex (VOR), and ocular misalignment are at the core of oculomotor cerebellar deficits. As a motor speech disorder, ataxic dysarthria is highly suggestive of cerebellar pathology. Regarding motor control of limbs, hypotonia, a- or dysdiadochokinesia, dysmetria, grasping deficits and various tremor phenomenologies are observed in cerebellar disorders to varying degrees. There is clear evidence that the cerebellum participates in force perception and proprioceptive sense during active movements. Gait is staggering with a wide base, and tandem gait is very often impaired in cerebellar disorders. In terms of cognitive and affective operations, impairments are found in executive functions, visual-spatial processing, linguistic function, and affective regulation (Schmahmann’s syndrome). Nonmotor linguistic deficits including disruption of articulatory and graphomotor planning, language dynamics, verbal fluency, phonological, and semantic word retrieval, expressive and receptive syntax, and various aspects of reading and writing may be impaired after cerebellar damage. The cerebellum is organized into (a) a primary sensorimotor region in the anterior lobe and adjacent part of lobule VI, (b) a second sensorimotor region in lobule VIII, and (c) cognitive and limbic regions located in the posterior lobe (lobule VI, lobule VIIA which includes crus I and crus II, and lobule VIIB). The limbic cerebellum is mainly represented in the posterior vermis. The cortico-ponto-cerebellar and cerebello-thalamo-cortical loops establish close functional connections between the cerebellum and the supratentorial motor, paralimbic and association cortices, and cerebellar symptoms are associated with a disruption of these loops.


Cerebellum Ataxia Eye movements Dysmetria Tremor A- or Dysdiadochokinesia Hypotonia Speech Dysarthria Language Cognition Affect Loops Functional topography Cerebellar syndrome 


Conflicts Of Interest

The authors declare no relevant conflict of interest.


  1. 1.
    Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;4:12.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11(2):336–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.CrossRefGoogle Scholar
  5. 5.
    Babinski J. Sur le role du cervelet dans les actes volitionnels nécessitant une succession rapide de mouvements (1) (diadococinésie). Rev Neurol. 1902;10:1013–5.Google Scholar
  6. 6.
    Holmes G. The Croonian lectures on the clinical symptoms of cerebellar disease and their interpretation. Lecture III. Lancet. 1922;200:59–65.CrossRefGoogle Scholar
  7. 7.
    Haines DE, Manto MU. Clinical symptoms of cerebellar disease and their interpretation. Cerebellum. 2007;6(4):360–74.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.PubMedCrossRefGoogle Scholar
  9. 9.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.PubMedCrossRefGoogle Scholar
  10. 10.
    Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum. 2007;6(3):159–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Mariën P, Ackermann H, Adamaszek M, Barwood CH, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lewis RF, Zee DS. Ocular motor disorders associated with cerebellar lesions: pathophysiology and topical localization. Rev Neurol (Paris). 1993;149(11):665–77.Google Scholar
  13. 13.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci. 1997;145:205–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Wartenberg R. Cerebellar signs. J Am Med Assoc. 1954;156(2):102–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Haerer AF. DeJong’s the neurological examination. 5th ed. Lippincott: Raven; 1992.Google Scholar
  16. 16.
    Kheradmand A, Zee DS. Cerebellum and ocular motor control. Front Neurol. 2011;2:53.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Schmahmann JD, Gardner R, MacMore J, Vangel MG. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov Disord. 2009;24(12):1820–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bürk K. Clinical scales of cerebellar ataxias. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer; 2013. p. 1785–1798.Google Scholar
  20. 20.
    Jacobi H, Rakowicz M, Rola R, Fancellu R, Mariotti C, Charles P, et al. Inventory of Non-Ataxia Signs (INAS): validation of a new clinical assessment instrument. Cerebellum. 2013;12(3):418–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Brandt T, Dieterich M, Strupp M. Vertigo and dizziness—common complaints. 2nd ed. London: Springer; 2013.CrossRefGoogle Scholar
  22. 22.
    Choi KD, Lee H, Kim JS. Vertigo in brainstem and cerebellar strokes. Curr Opin Neurol. 2013;26:90–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim JS, Lee H. Vertigo due to posterior circulation stroke. Semin Neurol. 2013;33(3):179–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee H, Sohn SI, Cho YW, Lee SR, Ahn BH, Park BR, et al. Cerebellar infarction presenting isolated vertigo: frequency and vascular topographical patterns. Neurology. 2006;67(7):1178–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Lee H, Kim HA. Nystagmus in SCA territory infarction: pattern and a possible mechanism. J Neurol Neurosurg Psychiatry. 2013;84:446–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Park HK, Kim JS, Strupp M, Zee DS. Isolated floccular infarction: impaired vestibular responses to horizontal head impulse. J Neurol. 2013;260:1576–82.PubMedCrossRefGoogle Scholar
  27. 27.
    Kim HJ, Lee SH, Park JH, Choi JY, Kim JS. Isolated vestibular nuclear infarction: report of two cases and review of the literature. J Neurol. 2014;261(1):121–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee SH, Park SH, Kim JS, Kim HJ, Yunusov F, Zee DS. Isolated unilateral infarction of the cerebellar tonsil: ocular motor findings. Ann Neurol. 2014;75:429–34.PubMedCrossRefGoogle Scholar
  29. 29.
    Baier B, Dieterich M. Ocular tilt reaction: a clinical sign of cerebellar infarctions? Neurology. 2009;72(6):572–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim HA, Yi HA, Lee H. Apogeotropic central positional nystagmus as a sole sign of nodular infarction. Neurol Sci. 2012;33(5):1189–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Kremmyda O, Zwergal A, La FC, Brandt T, Jahn K, Strupp M. 4-Aminopyridine suppresses positional nystagmus caused by cerebellar vermis lesion. J Neurol. 2013;260(1):321–3.PubMedCrossRefGoogle Scholar
  32. 32.
    Strupp M, Zwergal A, Brandt T. Episodic ataxia type 2. Neurotherapeutics. 2007;4:267–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Jen JC. Hereditary episodic ataxias. Ann N Y Acad Sci. 2008;1142:250–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Yu-Wai-Man P, Gorman G, Bateman DE, Leigh RJ, Chinnery PF. Vertigo and vestibular abnormalities in spinocerebellar ataxia type 6. J Neurol. 2009;256(1):78–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Krafczyk S, Tietze S, Swoboda W, Valkovic P, Brandt T. Artificial neural network: a new diagnostic posturographic tool for disorders of stance. Clin Neurophysiol. 2006;117(8):1692–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Szmulewicz DJ, Waterston JA, Halmagyi GM, Mossman S, Chancellor AM, Mclean CA, et al. Sensory neuropathy as part of the cerebellar ataxia neuropathy vestibular areflexia syndrome. Neurology. 2011;76(22):1903–10.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kirchner H, Kremmyda O, Hufner K, Stephan T, Zingler V, Brandt T, et al. Clinical, electrophysiological, and MRI findings in patients with cerebellar ataxia and a bilaterally pathological head-impulse test. Ann N Y Acad Sci. 2011;1233(1):127–38.PubMedCrossRefGoogle Scholar
  38. 38.
    Szmulewicz DJ, Mclean CA, Rodriguez ML, Chancellor AM, Mossman S, Lamont D, et al. Dorsal root ganglionopathy is responsible for the sensory impairment in CANVAS. Neurology. 2014;82:1410–5.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Leigh RJ, Zee DS. The neurology of eye movements. 5th ed. Oxford: University Press; 2015.Google Scholar
  41. 41.
    Wagner JN, Glaser M, Brandt T, Strupp M. Downbeat nystagmus: aetiology and comorbidity in 117 patients. J Neurol Neurosurg Psychiatry. 2008;79:672–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Zee DS. Mechanisms of nystagmus. Am J Otol. 1985;Suppl:30–4.Google Scholar
  43. 43.
    Walker MF, Zee DS. The effect of hyperventilation on downbeat nystagmus in cerebellar disorders. Neurology. 1999;53(7):1576–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228:199–202.PubMedCrossRefGoogle Scholar
  45. 45.
    Brandt T. Positional and positioning vertigo and nystagmus. J Neurol Sci. 1990;95:3–28.PubMedCrossRefGoogle Scholar
  46. 46.
    Huh YE, Kim JS. Patterns of spontaneous and head-shaking nystagmus in cerebellar infarction: imaging correlations. Brain. 2011;134:3662–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain. 2007;130:10–35.PubMedCrossRefGoogle Scholar
  48. 48.
    Sharpe JA. Neurophysiology and neuroanatomy of smooth pursuit: lesion studies. Brain Cogn. 2008;68:241–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Kremmyda O, Kirchner H, Glasauer S, Brandt T, Jahn K, Strupp M. False-positive head-impulse test in cerebellar ataxia. Front Neurol. 2012;3:162.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Thurston SE, Leigh RJ, Abel LA, Dell’Osso LF. Hyperactive vestibulo-ocular reflex in cerebellar degeneration: pathogenesis and treatment. Neurology. 1987;37:53–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. I. Saccadic overshoot dysmetria. An oculographic, control system and clinico-anatomical analysis. Brain. 1976;99:497–508.PubMedCrossRefGoogle Scholar
  52. 52.
    Helmchen C, Straube A, Buttner U. Saccadic lateropulsion in Wallenberg’s syndrome may be caused by a functional lesion of the fastigial nucleus. J Neurol. 1994;241:421–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Versino M, Hurko O, Zee DS. Disorders of binocular control of eye movements in patients with cerebellar dysfunction. Brain. 1996;119(Pt 6):1933–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Hüfner K, Frenzel C, Kremmyda O, Adrion C, Bardins S, Glasauer S, et al. Esophoria or esotropia in adulthood: a sign of cerebellar dysfunction? J Neurol. 2015;262(3):585–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Brandt T, Dieterich M. Skew deviation with ocular torsion: a vestibular brainstem sign of topographic diagnostic value. Ann Neurol. 1993;33:528–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Hallett M. Electrophysiological evaluation of movement disorders. In: Aminoff MJ, editor. Aminoff’s electrodiagnosis in clinical neurology. 6th ed. Amsterdam: Elsevier; 2012. p. 437–53.CrossRefGoogle Scholar
  57. 57.
    Holmes G. The cerebellum of man. Brain. 1939;62:1–30.CrossRefGoogle Scholar
  58. 58.
    Gilman S, Bloedel JR, Lechtenberg R. Disorders of the cerebellum. Philadelphia: Davis; 1981.Google Scholar
  59. 59.
    Samii A, Wassermann EM, Hallett M. Decreased postexercise facilitation of motor evoked potentials in patients with cerebellar degeneration. Neurology. 1997;49(2):538–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Koeppen AH. The pathogenesis of spinocerebellar ataxia. Cerebellum. 2005;4(1):62–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Stewart TG, Holmes G. Symptomatology of cerebellar tumors: a study of forty cases. Brain. 1904;27:522–91.CrossRefGoogle Scholar
  62. 62.
    Manto M. Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambridge University Press; 2010.CrossRefGoogle Scholar
  63. 63.
    Goldstein K, Reichmann F. Beiträge zur Kasuistik und Symptomatologie der Kleinhirnerkrankungen (im besonderen zu den Störungen der Bewegungen, der Gewichts-, Raum- und Zeiteinschätzung). Arch Psychiat Nervenkr. 1916;56:466–521.CrossRefGoogle Scholar
  64. 64.
    Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press; 1958.Google Scholar
  65. 65.
    Campbell WW. DeJong’s the neurologic examination. 6th ed. Philadelphia: Lippencott Williams & Wilkens; 2005.Google Scholar
  66. 66.
    Ziegler W, Wessel K. Speech timing in ataxic disorders: sentence production and rapid repetitive articulation. Neurology. 1996;47:208–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Diener HC, Dichgans J. Pathophysiology of cerebellar ataxia. Mov Disord. 1992;7:95–109.PubMedCrossRefGoogle Scholar
  68. 68.
    Hallett M, Bhagwan T, Shahani BT, Young RR. EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38:1163–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Conrad B, Brooks VB. Effects on dentate cooling on rapid alternating arm movements. J Neurophysiol. 1973;37:792–804.Google Scholar
  70. 70.
    Spidalieri G, Busby L, Lamarre Y. Fast ballistic arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. II. Effects of unilateral dentate lesion on discharge of precentral cortical neurons and reaction time. J Neurophysiol. 1983;50:1359–79.PubMedGoogle Scholar
  71. 71.
    Thach WT, Perry JG, Kane SA, Goodkin HP. Cerebellar nuclei: rapid alternating movement, motor somatotopy, and a mechanism for the control of muscle synergy. Rev Neurol (Paris). 1993;149:607–28.Google Scholar
  72. 72.
    Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76:492–509.PubMedGoogle Scholar
  73. 73.
    Deuschl G, Raethjen J, Lindemann M, Krack P. The pathophysiology of tremor. Muscle Nerve. 2001;24:716–35.PubMedCrossRefGoogle Scholar
  74. 74.
    Flament D, Hore J. Comparison of cerebellar intention tremor under isotonic and isometric conditions. Brain Res. 1988;439:179–86.PubMedCrossRefGoogle Scholar
  75. 75.
    Louis ED, Frucht SJ, Rios E. Intention tremor in essential tremor: prevalence and association with disease duration. Mov Disord. 2009;24(4):626–7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Louis ED. The primary type of tremor in essential tremor is kinetic rather than postural: cross-sectional observation of tremor phenomenology in 369 cases. Eur J Neurol. 2013;20(4):725–7.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Louis ED. From neurons to neuron neighborhoods: the rewiring of the cerebellar cortex in essential tremor. Cerebellum. 2014;13(4):501–12.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Grimaldi G, Manto M. Is essential tremor a Purkinjopathy? The role of the cerebellar cortex in its pathogenesis. Mov Disord. 2013;28(13):1759–61.PubMedCrossRefGoogle Scholar
  79. 79.
    Louis ED, Faust PL, Vonsattel JP, Honig LS, Rajput A, Rajput A, et al. Torpedoes in Parkinson’s disease, Alzheimer’s disease, essential tremor, and control brains. Mov Disord. 2009;24(11):1600–5.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Leegwater-Kim J, Louis ED, Pullman SL, Floyd AG, Borden S, Moskowitz CB, et al. Intention tremor of the head in patients with essential tremor. Mov Disord. 2006;21(11):2001–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Paris-Robidas S, Brochu E, Sintes M, Emond V, Bousquet M, Vandal M, et al. Defective dentate nucleus GABA receptors in essential tremor. Brain. 2012;135(Pt 1):105–16.PubMedCrossRefGoogle Scholar
  82. 82.
    Prudente CN, Pardo CA, Xiao J, Hanfelt J, Hess EJ, Ledoux MS, et al. Neuropathology of cervical dystonia. Exp Neurol. 2013;241:95–104.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Fukutani Y, Cairns NJ, Rossor MN, Lantos PL. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer’s disease. Neurosci Lett. 1996;214(1):33–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Castiello U. The neuroscience of grasping. Nat Rev Neurosci. 2005;6:726–36.PubMedCrossRefGoogle Scholar
  85. 85.
    Flanagan JR, Johansson RS. Hand movements. In: Ramashandran VS, editor. Encyclopedia of the human brain. USA: Elsevier Science; 2002. p. 399–414.CrossRefGoogle Scholar
  86. 86.
    Brandauer B, Hermsdörfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, et al. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol. 2008;119:2528–37.PubMedCrossRefGoogle Scholar
  87. 87.
    Nowak DA, Timmann D, Hermsdörfer J. Dexterity in cerebellar agenesis. Neuropsychologia. 2007;45:696–703.PubMedCrossRefGoogle Scholar
  88. 88.
    Nowak DA, Hermsdörfer J, Marquardt C, Fuchs HH. Grip and load force coupling during discrete vertical movements in cerebellar atrophy. Exp Brain Res. 2002;145:28–39.PubMedCrossRefGoogle Scholar
  89. 89.
    Rost K, Nowak DA, Timmann D, Hermsdörfer J. Preserved and impaired aspects of predictive grip force control in cerebellar subjects. Clin Neurophysiol. 2005;54:23–7.Google Scholar
  90. 90.
    Wolpert DM, Flanagan JR. Motor prediction. Curr Biol. 2001;11:R729–32.PubMedCrossRefGoogle Scholar
  91. 91.
    Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.PubMedCrossRefGoogle Scholar
  92. 92.
    Nowak DA, Timmann D, Hermsdörfer J. Deficits of grasping in cerebellar disorders. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer; 2013. p. 1657–1667.Google Scholar
  93. 93.
    Marek M, Paus S, Allert N, Mädler B, Klockgether T, Urbach H, et al. Ataxia and tremor due to lesions involving cerebellar projection pathways: a DTI tractographic study in six patients. J Neurol. 2015;262(1):54–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Fisher CM, Cole M. Homolateral ataxia and crural paresis: a vascular syndrome. J Neurol Neurosurg Psychiatry. 1965;28:48–55.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hiraga A. Ataxic hemiparesis. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Doordrecht: Springer; 2013. p. 1669–86.CrossRefGoogle Scholar
  96. 96.
    Schmahmann JD, Ko R, MacMore J. The human basis pontis: motor syndromes and topographic organization. Brain. 2004;127(Pt 6):1269–91.PubMedCrossRefGoogle Scholar
  97. 97.
    Grimaldi G. Cerebellar motor disorders. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer; 2013.Google Scholar
  98. 98.
    Manto M, Godaux E, Jacquy J. Cerebellar hypermetria is larger when the inertial load is artificially increased. Ann Neurol. 1994;35(1):45–52.PubMedCrossRefGoogle Scholar
  99. 99.
    Hore J, Wild B, Diener HC. Cerebellar dysmetria at the elbow, wrist and fingers. J Neurophysiol. 1991;65:563–71.PubMedGoogle Scholar
  100. 100.
    Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.PubMedGoogle Scholar
  101. 101.
    Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.PubMedGoogle Scholar
  102. 102.
    Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119(Pt 4):1183–98.PubMedCrossRefGoogle Scholar
  103. 103.
    Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.PubMedCrossRefGoogle Scholar
  104. 104.
    Brunamonti E, Chiricozzi FR, Clausi S, Olivito G, Giusti MA, Molinari M, et al. Cerebellar damage impairs executive control and monitoring of movement generation. PLoS One. 2014;9(1):e85997. doi: 10.1371/journal.pone.0085997.
  105. 105.
    Bhanpuri NH, Okamura AM, Bastian AJ. Predicting and correcting ataxia using a model of cerebellar function. Brain. 2014;137(Pt 7):1931–44.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Brown SH, Kessler KR, Hefter H, Cooke JD, Freund HJ. Role of the cerebellum in visuomotor coordination. I. Delayed eye and arm initiation in patients with mild cerebellar ataxia. Exp Brain Res. 1993;94(3):478–88.PubMedCrossRefGoogle Scholar
  107. 107.
    Manto M, Van Den Braber N, Grimaldi G, Lammertse P. A new myohaptic instrument to assess wrist motion dynamically. Sensors. 2010;10:3180–94.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Topka H, Konczak J, Schneider K, Boose A, Dichgans J. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res. 1998;119(4):493–503.PubMedCrossRefGoogle Scholar
  109. 109.
    Molinari M, Leggio M. Cerebellar sequencing for cognitive processing. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Doordrecht: Springer; 2013. p. 1701–15.CrossRefGoogle Scholar
  110. 110.
    Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.PubMedCrossRefGoogle Scholar
  111. 111.
    Maschke M, Gomez CM, Tuite PJ, Konczak J. Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain. 2003;126:2312–22.PubMedCrossRefGoogle Scholar
  112. 112.
    Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science. 1996;26;272(5261):545–7.CrossRefGoogle Scholar
  113. 113.
    Hartmann MJ, Bower JM. Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. J Neurosci. 2001;21(10):3549–63.PubMedGoogle Scholar
  114. 114.
    Angel RW. Barognosis in a patient with hemiataxia. Ann Neurol. 1980;7:73–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Bhanpuri NH, Okamura AM, Bastian AJ. Active force perception depends on cerebellar function. J Neurophysiol. 2012;107:1612–20.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bhanpuri NH, Okamura AM, Bastian AJ. Predictive modeling by the cerebellum improves proprioception. J Neurosci. 2013;33(36):14301–6.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Grill SE, Hallett M, Marcus C, McShane L. Disturbances of kinaesthesia in patients with cerebellar disorders. Brain. 1994;117(Pt 6):1433–47.PubMedCrossRefGoogle Scholar
  118. 118.
    Palliyath S, Hallett M, Thomas SL, Lebiedowska MK. Gait in patients with cerebellar ataxia. Mov Disord. 1998;13:958–64.PubMedCrossRefGoogle Scholar
  119. 119.
    Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Characteristics of parkinsonian and ataxic gaits: a study using surface electromyograms, angular displacements and floor reaction forces. J Neurol Sci. 2000;174:22–39.PubMedCrossRefGoogle Scholar
  120. 120.
    Stolze H, Klebe S, Petersen G, Raethjen J, Wenzelburger R, Witt K, et al. Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry. 2002;73:310–2.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol. 2003;89:1844–56.PubMedCrossRefGoogle Scholar
  122. 122.
    Earhart GM, Bastian AJ. Selection and coordination of human locomotor forms following cerebellar damage. J Neurophysiol. 2001;85:759–69.PubMedGoogle Scholar
  123. 123.
    Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, et al. Gait pattern in inherited cerebellar ataxias. Cerebellum. 2012;11:194–211.PubMedCrossRefGoogle Scholar
  124. 124.
    Timmann D, Horak FB. Perturbed step initiation in cerebellar subjects. 1. Modifications of postural responses. Exp Brain Res. 1998;119:73–84.PubMedCrossRefGoogle Scholar
  125. 125.
    Serrao M, Conte C, Casali C, Ranavolo A, Mari S, Di Fabio R, et al. Reply to comment “Why do patients with cerebellar ataxia not use environmental cues for reducing unpredictability of sudden gait stopping?” on “Sudden stopping in patients with cerebellar ataxia”. Cerebellum. 2013;12:958–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Serrao M, Conte C, Casali C, Ranavolo A, Mari S, Di Fabio R, et al. Sudden stopping in patients with cerebellar ataxia. Cerebellum. 2013;12:607–16.PubMedCrossRefGoogle Scholar
  127. 127.
    Serrao M, Mari S, Conte C, Ranavolo A, Casali C, Draicchio F, et al. Strategies adopted by cerebellar ataxia patients to perform U-turns. Cerebellum. 2013;12:460–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Conte C, Serrao M, Casali C, Ranavolo A, Mari S, Draicchio F, et al. Planned gait termination in cerebellar ataxias. Cerebellum. 2012;11:896–904.PubMedCrossRefGoogle Scholar
  129. 129.
    Mari S, Serrao M, Casali C, Conte C, Ranavolo A, Padua L, et al. Turning strategies in patients with cerebellar ataxia. Exp Brain Res. 2012;222:65–75.PubMedCrossRefGoogle Scholar
  130. 130.
    van de Warrenburg BP, Steijns JA, Munneke M, Kremer BP, Bloem BR. Falls in degenerative cerebellar ataxias. Mov Disord. 2005;20:497–500.PubMedCrossRefGoogle Scholar
  131. 131.
    Bastian AJ, Zackowski KM, Thach WT. Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol. 2000;83:3019–30.PubMedGoogle Scholar
  132. 132.
    Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain. 2007;130:786–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Martino G, Ivanenko YP, Serrao M, Ranavolo A, d’Avella A, Draicchio F, et al. Locomotor patterns in cerebellar ataxia. J Neurophysiol. 2014;112:2810–21.PubMedCrossRefGoogle Scholar
  134. 134.
    Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.PubMedCrossRefGoogle Scholar
  135. 135.
    Morton SM, Bastian AJ. Mechanisms of cerebellar gait ataxia. Cerebellum. 2007;6:79–86.PubMedCrossRefGoogle Scholar
  136. 136.
    Hausdorff JM. Stride variability: beyond length and frequency. Gait Posture. 2004;20:304.PubMedCrossRefGoogle Scholar
  137. 137.
    Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, et al. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol. 2014;261:213–23.PubMedCrossRefGoogle Scholar
  138. 138.
    Mari S, Serrao M, Casali C, Conte C, Martino G, Ranavolo A, et al. Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. Cerebellum. 2014;13:226–36.PubMedCrossRefGoogle Scholar
  139. 139.
    Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10:247–59.PubMedCrossRefGoogle Scholar
  140. 140.
    Van de Warrenburg BP, Bakker M, Kremer BP, Bloem BR, Allum JH. Trunk sway in patients with spinocerebellar ataxia. Mov Disord. 2005;20:1006–13.PubMedCrossRefGoogle Scholar
  141. 141.
    Conte C, Pierelli F, Casali C, Ranavolo A, Draicchio F, Martino G, et al. Upper body kinematics in patients with cerebellar ataxia. Cerebellum. 2014;13(6):689–97.PubMedCrossRefGoogle Scholar
  142. 142.
    Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.PubMedCrossRefGoogle Scholar
  143. 143.
    Schmahmann JD and Pandya DN. The cerebrocerebellar system. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic Press. Int Rev Neurobiol 1997; 41:31–60.Google Scholar
  144. 144.
    Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59(2):1560–70.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Moulton EA, Elman I, Pendse G, Schmahmann JD, Becerra L, Borsook D. Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. J Neurosci. 2011;31(10):3795–804.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRefGoogle Scholar
  147. 147.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedCrossRefGoogle Scholar
  148. 148.
    Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumor resection in children: cerebellar cognitive affective syndrome in a pediatric population. Brain. 2000;123:1041–50.PubMedCrossRefGoogle Scholar
  149. 149.
    Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(Pt 12):3672–86.PubMedCrossRefGoogle Scholar
  150. 150.
    Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.PubMedCrossRefGoogle Scholar
  151. 151.
    Brossard-Racine M, du Plessis AJ, Limperopoulos C. Developmental cerebellar cognitive affective syndrome in ex-preterm survivors following cerebellar injury. Cerebellum. 2015;14(2):151–64.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;74:1524–31.CrossRefGoogle Scholar
  153. 153.
    Baillieux H, De Smet HJ, Dobbeleir A, Paquier PF, De Deyn PP, Mariën P. Cognitive and affective disturbances following focal cerebellar damage in adults: a neuropsychological and SPECT study. Cortex. 2010;46:869–79.PubMedCrossRefGoogle Scholar
  154. 154.
    Thompson RF, Bao S, Chen L, Cipriano BD, Grethe JS, Kim JJ. Associative learning. In: Schmahmann JD, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 151–89.Google Scholar
  155. 155.
    Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69(1):102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Stoodley CJ, Schmahmann JD. The cerebellum and language: evidence from patients with patients with cerebellar degeneration. Brain Lang. 2009;110:149–53.PubMedCrossRefGoogle Scholar
  157. 157.
    Guëll X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum. 2015;14(1):50–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Pollack IF, Polinko P, Albright AL, Towbin R, Fitz C. Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: incidence and pathophysiology. Neurosurgery. 1995;37:885–93.PubMedCrossRefGoogle Scholar
  159. 159.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Parvizi J, Joseph J, Press DZ, Schmahmann JD. Pathological laughter and crying in patients with multiple system atrophycerebellar type. Mov Disord. 2007;22:798–803.PubMedCrossRefGoogle Scholar
  161. 161.
    Sokolovsky N, Cook A, Hunt H, Giunti P, Cipolotti L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav Neurol. 2010;23(1-2):17–29.PubMedCrossRefGoogle Scholar
  162. 162.
    Hoche F, Harding JA, Vangel M, Schmahmann JD. The cerebellar contribution to social cognition. Soc Neurosci. Abstracts, 2014;114.Google Scholar
  163. 163.
    Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMedCrossRefGoogle Scholar
  164. 164.
    Darley FL, Aronson AE, Brown JR. Motor speech disorders. Philadelphia: Saunders; 1975.Google Scholar
  165. 165.
    Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90.PubMedCrossRefGoogle Scholar
  166. 166.
    Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13.PubMedCrossRefGoogle Scholar
  167. 167.
    Ackermann H, Vogel M, Petersen D, Poremba M. Speech deficits in ischaemic cerebellar lesions. J Neurol. 1992;239:223–7.PubMedCrossRefGoogle Scholar
  168. 168.
    Urban PP, Marx J, Hunsche S, Gawehn J, Vucurevic G, Wicht S, et al. Cerebellar speech representation: lesion topography in dysarthria as derived from cerebellar ischemia and functional magnetic resonance imaging. Arch Neurol. 2003;60:965–72.PubMedCrossRefGoogle Scholar
  169. 169.
    Urban PP. Speech motor deficits in cerebellar infarctions. Brain Lang. 2013;127:323–6.PubMedCrossRefGoogle Scholar
  170. 170.
    Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.PubMedCrossRefGoogle Scholar
  171. 171.
    De Smet HJ, Baillieux H, Catsman-Berrevoets C, De Deyn PP, Mariën P, Paquier PF. Postoperative motor speech production in children with the syndrome of ‘cerebellar’ mutism and subsequent dysarthria: a critical review of the literature. Eur J Paediatr Neurol. 2007;11:193–207.PubMedCrossRefGoogle Scholar
  172. 172.
    Mariën P, Verhoeven J, Engelborghs S, Rooker S, Pickut BA, De Deyn PP. A role for the cerebellum in motor speech planning: evidence from foreign accent syndrome. Clin Neurol Neurosurg. 2006;108:518–22.PubMedCrossRefGoogle Scholar
  173. 173.
    Mariën P, Saerens J, Nanhoe R, Moens E, Nagels G, Pickut B, et al. Cerebellar induced aphasia: case report of cerebellar induced prefrontal aphasic language phenomena supported by SPECT findings. J Neurol Sci. 1996;144:34–43.PubMedCrossRefGoogle Scholar
  174. 174.
    Adamaszek M, Strecker K, Kessler C. Impact of cerebellar lesion on syntactic processing evidenced by event-related potentials. Neurosci Lett. 2012;12(2):78–82.CrossRefGoogle Scholar
  175. 175.
    Mariën P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 2001;79:580–600.PubMedCrossRefGoogle Scholar
  176. 176.
    Moretti R, Bava A, Torre P, Antonello RM, Cazzato G. Reading errors in patients with cerebellar vermis lesions. J Neurol. 2002;249:461–8.PubMedCrossRefGoogle Scholar
  177. 177.
    Moretti R, Torre P, Antonello RM, Carraro N, Zambito-Marsala S, Ukmar MJ, et al. Peculiar aspects of reading and writing performances in patients with olivopontocerebellar atrophy. Percept Mot Skills. 2002;94:677–94.PubMedCrossRefGoogle Scholar
  178. 178.
    Mariën P, Baillieux H, De Smet HJ, Engelborghs S, Wilssens I, Paquier P, et al. Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: a case study. Cortex. 2009;45:527–36.PubMedCrossRefGoogle Scholar
  179. 179.
    De Smet HJ, Engelborghs S, Paquier PF, De Deyn PP, Mariën P. Cerebellar-induced apraxic agraphia: a review and three new cases. Brain Cogn. 2011;76(3):424–34.PubMedCrossRefGoogle Scholar
  180. 180.
    Manto M, Mariën P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias 2015;2:2.Google Scholar
  181. 181.
    Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, et al. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162:836–51.PubMedCrossRefGoogle Scholar
  182. 182.
    Timmann D, Brandauer B, Hermsdörfer J, Ilg W, Konczak J, Gerwig M, et al. Lesion-symptom mapping of the human cerebellum. Cerebellum. 2008;7:602–6.PubMedCrossRefGoogle Scholar
  183. 183.
    Timmann D, Küper M, Gizewski ER, Schoch B, Donchin O. Lesion-symptom mapping of the human cerebellum. In: Manto M, Schmahmann JD, Rossi F, Gruol DL, Koibuchi N, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer; 2013. p. 1627–1656.Google Scholar
  184. 184.
    Schmahmann JD, Doyon J, Toga A, Petrides M, Evans A. MRI Atlas of the human cerebellum. San Diego: Academic; 2000.Google Scholar
  185. 185.
    Schmahmann JD, Macmore J, Vangel M. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience. 2009;162:852–61.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Florian Bodranghien
    • 1
  • Amy Bastian
    • 12
  • Carlo Casali
    • 13
  • Mark Hallett
    • 6
  • Elan D. Louis
    • 9
  • Mario Manto
    • 1
    Email author
  • Peter Mariën
    • 16
    • 17
  • Dennis A. Nowak
    • 10
    • 11
  • Jeremy D. Schmahmann
    • 15
  • Mariano Serrao
    • 13
    • 14
  • Katharina Marie Steiner
    • 7
    • 8
  • Michael Strupp
    • 2
  • Caroline Tilikete
    • 3
    • 4
    • 5
  • Dagmar Timmann
    • 7
    • 8
  • Kim van Dun
    • 17
  1. 1.FNRS ULB-Erasme, Unité d’Etude du MouvementBrusselsBelgium
  2. 2.University of MunichMunichGermany
  3. 3.CRNL INSERM U1028 CNRS UMR5292, Team ImpActBronFrance
  4. 4.Lyon I UniversityLyonFrance
  5. 5.Hospices Civils de Lyon, Neuro-Ophthalmology and Neurology D, Hôpital Neurologique Pierre WertheimerBronFrance
  6. 6.Human Motor Control Section, NINDSBethesdaUSA
  7. 7.Department of NeurologyUniversity Clinic EssenEssenGermany
  8. 8.Department of NeurologyUniversity of Duisburg-EssenEssenGermany
  9. 9.Department of NeurologyYale School of MedicineNew HavenUSA
  10. 10.Helios Klinik KipfenbergKipfenbergGermany
  11. 11.Neurologische Universitätsklinik, Philipps-Universität MarburgMarburgGermany
  12. 12.Kennedy Krieger InstituteBaltimoreUSA
  13. 13.Department of Medical and Surgical Sciences and BiotechnologiesRome Sapienza UniversityRomeItaly
  14. 14.Rehabilitation Centre, Movement Analysis LAB, Policlinico ItaliaRomeItaly
  15. 15.Ataxia Unit, Cognitive Behavioural Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  16. 16.Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit BrusselBrusselsBelgium
  17. 17.Department of Neurology and Memory ClinicZNA Middelheim General HospitalAntwerpBelgium

Personalised recommendations