The Cerebellum

, Volume 14, Issue 5, pp 570–577 | Cite as

The Emotional Cerebellum



Great attention has been given so far to cerebellar control of posture and of skilled movements despite the well-demonstrated interconnections between the cerebellum and the autonomic nervous system. Here is a review of the link between these two structures and a report on the recently acquired evidence for its involvement in the world of emotions. In rodents, the reversible inactivation of the vermis during the consolidation or the reconsolidation period hampers the retention of the fear memory trace. In this region, there is a long-term potentiation of both the excitatory synapses between the parallel fibres and the Purkinje cells and of the feed-forward inhibition mediated by molecular layer interneurons. This concomitant potentiation ensures the temporal fidelity of the system. Additional contacts between mossy fibre terminals and Golgi cells provide morphological evidence of the potentiation of another feed-forward inhibition in the granular layer. Imaging experiments show that also in humans the cerebellum is activated during mental recall of emotional personal episodes and during learning of a conditioned or unconditioned association involving emotions. The vermis participates in fear learning and memory mechanisms related to the expression of autonomic and motor responses of emotions. In humans, the cerebellar hemispheres are also involved at a higher emotional level. The importance of these findings is evident when considering the cerebellar malfunctioning in psychiatric diseases like autism and schizophrenia which are characterized behaviourally by emotion processing impairments.


Cerebellar vermis Fear learning and memory Purkinje cells LTP/LTD Feed-forward inhibition Emotions 


Conflict of Interest

The author declares that he has no conflict of interest.


  1. 1.
    Glickstein M, Strata P, Voogd J. Cerebellum: history. Neuroscience. 2009;162:549–59.CrossRefPubMedGoogle Scholar
  2. 2.
    Malacarne V. Nuova esposizione della vera struttura del cervelletto umano. Torino: Briolo; 1776.Google Scholar
  3. 3.
    Malacarne V, Bonnet C. Sulla nevro-encefalotomia. Lettere anatomico-fisiologiche di Vincenzo Malacarne e di Carlo Bonnet. Pavia: s.i.t.; 1791.Google Scholar
  4. 4.
    Rolando L. Saggio sopra le vera struttura del cervello dell’uomo e degli animali e sopra le funzioni del sistema nervoso. Sassari: Stamperia da S.S.R.M; 1809.Google Scholar
  5. 5.
    Flourens P. Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. Paris: Crevot; 1824.Google Scholar
  6. 6.
    Ito M. The cerebellum and neural control. New York: Raven Press;1984.Google Scholar
  7. 7.
    Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: The University of Minnesota Press; 1958.Google Scholar
  8. 8.
    Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.Google Scholar
  9. 9.
    Sultan F. Analysis of mammalian brain architecture. Nature. 2002;415:133–4.Google Scholar
  10. 10.
    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.Google Scholar
  11. 11.
    Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci. 1989;1:153–70.Google Scholar
  12. 12.
    Doron KW, Funk CM, Glickstein M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 2010;1307:63–71.Google Scholar
  13. 13.
    Smith Jr OA, Nathan MA. Inhibition of the carotid sinus reflex by stimulation of the inferior olive. Science. 1966;154:674–5.Google Scholar
  14. 14.
    Snider RS. Recent contribution to the anatomy and physiology of the cerebellum. Arch Neurol Psychiatry. 1950;64:196–219.Google Scholar
  15. 15.
    Aas JE, Brodal P. Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: an experimental anatomical study in the cat. J Comp Neurol. 1988;268:313–28.CrossRefPubMedGoogle Scholar
  16. 16.
    Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to limbic system. J Neurophysiol. 1959;22:451–7.Google Scholar
  17. 17.
    Dietrichs E, Haines DE. Observations on the cerebello-hypothalamic projection, with comments on non-somatic cerebellar circuits. Arch Ital Biol. 1985;123:33–9.Google Scholar
  18. 18.
    Haines DE, Dietrichs E, Sowa TE. Hypothalamo-cerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers affective behavior. Brain Behav Evol. 1984;24:198–220.Google Scholar
  19. 19.
    Supple Jr WF. Hypothalamic modulation of Purkinje cell activity in the anterior cerebellar vermis. Neuroreport. 1993;4:979–82.Google Scholar
  20. 20.
    Newman PP, Paul DH. The representation of some visceral afferents in the anterior lobe of the cerebellum. J Physiol. 1969;182:195–208Google Scholar
  21. 21.
    Newman PP, Paul DH. The projection of splanchnic afferents on the cerebellum of the cat. J Physiol. 1969;202:223–7.Google Scholar
  22. 22.
    Rubia FJ. The projection of visceral afferents to the cerebellar cortex of the cat. Pflugers Arch. 1970;320:97–110.Google Scholar
  23. 23.
    Langhof H, Höppener U, Rubia FJ. Climbing fiber responses to splanchnic nerve stimulation. Brain Res. 1973;53:232–6.Google Scholar
  24. 24.
    Perrin J, Crousillat J. Responses of single units in the inferior olive nucleus to stimulation of the splanchnic afferents in the cat. J Auton Nerv Syst. 1980;2:15–22.Google Scholar
  25. 25.
    Perciavalle V, Apps R, Bracha V, Delgado-García JM, Gibson AR, Leggio M, et al. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum. 2013;12:738–57.Google Scholar
  26. 26.
    Ledoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84.Google Scholar
  27. 27.
    Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162:756–62.Google Scholar
  28. 28.
    Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4:174–98.Google Scholar
  29. 29.
    Berntson GG, Torello MW. The paleocerebellum and the integration of behavioural function. Physiol Psychol. 1982;10:2–12.Google Scholar
  30. 30.
    Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J Neurosci Res. 1976;2:133–46.Google Scholar
  31. 31.
    Supple WFJR, Leaton RN, Fanselow MS. Effects of cerebellar vermal lesions on species-specific fear responses, neophobia, and taste-aversion learning in rats. Physiol Behav. 1987;39:579–86.Google Scholar
  32. 32.
    Supple Jr WF, Kapp BS. The anterior cerebellar vermis: essential involvement in classically conditioned bradycardia in the rabbit. J Neurosci. 1993;13:3705–11.Google Scholar
  33. 33.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.Google Scholar
  34. 34.
    Maschke M, Schugens M, Kindsvater K, Drepper J, Kolb FP, Diener HC, et al. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72:116–8.Google Scholar
  35. 35.
    Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci U S A. 2002;99:8406– 11.Google Scholar
  36. 36.
    Sacchetti B, Sacco T, Strata P. Reversible inactivation of amygdala and cerebellum but not perirhinal cortex impairs reactivated fear memories. Eur J Neurosci. 2007;25:2875–84.Google Scholar
  37. 37.
    Leaton RN, Supple Jr WF. Cerebellar vermis: essential for long-term habituation of the acoustic startle response. Science. 1986;232:513–5.Google Scholar
  38. 38.
    Lopiano L, de’Sperati C, Montarolo PG. Long-term habituation of the acoustic startle response: role of the cerebellar vermis. Neuroscience. 1990;35:79–84.Google Scholar
  39. 39.
    Batini C, Benedetti F, Buisseret-Delmas C, Montarolo PG, Strata P. Metabolic activity of intracerebellar nuclei in the rat: effect of inferior olive inactivation. Exp Brain Res. 1984;54:259–65.Google Scholar
  40. 40.
    Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.Google Scholar
  41. 41.
    Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science. 1999;284:1979–81.Google Scholar
  42. 42.
    Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortical and cortical brain activity during the feeling of selfgenerated emotions. Nat Neurosci. 2000;3:1049–56.Google Scholar
  43. 43.
    Singer T, Seymour B, O'doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303:1157–62.Google Scholar
  44. 44.
    Supple Jr WF, Sebastiani L, Kapp BS. Purkinje cell responses in the anterior cerebellar vermis during Pavlovian fear conditioning in the rabbit. Neuroreport. 1993;4:975–8.Google Scholar
  45. 45.
    Marr D. A theory of cerebellar function. J Physiol. 1969;202:437–70.Google Scholar
  46. 46.
    Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.CrossRefGoogle Scholar
  47. 47.
    Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.Google Scholar
  48. 48.
    Lev-Ram V,Wong ST, Storm DR, Tsien RY. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci U S A. 2002;99:8389–93.Google Scholar
  49. 49.
    Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY. Reversing cerebellar long-term depression. Proc Natl Acad Sci U S A. 2003;100:15989–93.Google Scholar
  50. 50.
    Rogan MT, Stäubli UV, LeDoux JE. AMPA receptor facilitation accelerates fear learning without altering the level of conditioned fear acquired. J Neurosci. 1997;17:5928–35.Google Scholar
  51. 51.
    Sacchetti B, Scelfo B, Tempia F, Strata P. Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron. 2004;42:973–82.Google Scholar
  52. 52.
    Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic lasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.Google Scholar
  53. 53.
    Ly R, Bouvier G, Schonewille M, Arabo A, Rondi-Reig L, Léna C, et al. T-type channel blockade impairs long-term potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning. Proc Natl Acad Sci U S A. 2013;110:20302–7.Google Scholar
  54. 54.
    Rahmati N, Owens CB, Bosman LW, Spanke JK, Lindeman S, Gong W, et al. Cerebellar potentiation and learning a whisker-based object localization task with a time response window. J Neurosci. 2014;34:1949–62.Google Scholar
  55. 55.
    Zhu L, Scelfo B, Hartell NA, Strata P, Sacchetti B. The effects of fear conditioning on cerebellar LTP and LTD. Eur J Neurosci. 2007;26:219–27.Google Scholar
  56. 56.
    Berthier NE, Moore JW. Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Exp Brain Res. 1986;63:341–50.Google Scholar
  57. 57.
    Gould TJ, Steinmetz JE. Changes in rabbit cerebellar cortical and interpositus nucleus activity during acquisition, extinction, and backward classical eyelid conditioning. Neurobiol Learn Mem. 1996;65:17–34. Google Scholar
  58. 58.
    Thompson RF. Neural mechanisms of classical conditioning in mammals. Philos Trans R Soc Lond B Biol Sci. 1990;2:331–7.Google Scholar
  59. 59.
    Schreurs BG, Tomsic D, Gusev PA, Alkon DL. Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit’s nictitating membrane response. J Neurophysiol. 1997;77:86–92.Google Scholar
  60. 60.
    Schreurs BG, Gusev PA, Tomsic D, Alkon DL, Shi T. Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J Neurosci. 1998;18:5498–507.Google Scholar
  61. 61.
    Zhu L, Scelfo B, Tempia F, Sacchetti B, Strata P. Membrane excitability and fear conditioning in cerebellar Purkinje cell. Neuroscience. 2006;140:801–10.Google Scholar
  62. 62.
    Lang EJ, Paré D. Similar inhibitory processes dominate the responses of cat lateral amygdaloid projection neurons to their various afferents. J Neurophysiol. 1997;77:341–52.Google Scholar
  63. 63.
    Li XF, Armony JL, Ledoux JE. GABAA and GABAB receptors differentially regulate synaptic transmission in the auditory thalamo-amygdala pathway: an in vivo microiontophoretic study and a model. Synapse. 1996;24:115–24.Google Scholar
  64. 64.
    Wiltgen BJ, Sanders MJ, Ferguson C, Homanics GE, Fanselow MS. Trace fear conditioning is enhanced in mice lacking the delta subunit of the GABAA receptor. Learn Mem. 2005;12:327–33.Google Scholar
  65. 65.
    Eccles JC, Ito M, Szentàgothai J. The cerebellum as a neuronal machine. Berlin: Springer; 1967.Google Scholar
  66. 66.
    Scelfo B, Sacchetti B, Strata P. Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex. Proc Natl Acad Sci U S A. 2008;105:769–74.Google Scholar
  67. 67.
    Pouille F, Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science. 2001;293:1159–63.Google Scholar
  68. 68.
    Lamsa K, Heeroma JH, Kullmann DM. Hebbian. LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination. Nat Neurosci. 2005;916-24.Google Scholar
  69. 69.
    Mittmann W, Koch U, Hausser M. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J Physiol. 2005;563:369–78.Google Scholar
  70. 70.
    Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P, Sacchetti B, et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature. 2011;473:514–8.Google Scholar
  71. 71.
    Caroni P, Chowdhury A, Lahr M. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits. Trends Neurosci. 2014;37:604–14.Google Scholar
  72. 72.
    LaBar KS, Cabeza R. Cognitive neuroscience of emotional memory. Nat Rev Neurosci. 2006;7:54–64.Google Scholar
  73. 73.
    Heath RG, Franklin DE, Shraberg D. Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. J Nerv Ment Dis. 1979;167:585–92.Google Scholar
  74. 74.
    Lungu O, Barakat M, Laventure S, Debas K, Proulx S, Luck D, et al. The incidence and nature of cerebellar findings in schizophrenia: a quantitative review of fMRI literature. Schizophr Bull. 2012;39:797–806.Google Scholar
  75. 75.
    Picard H, Amado I, Mouchet-Mages S, Olié JP, Krebs MO. The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull. 2008;34:155–72.Google Scholar
  76. 76.
    Shakiba A. The role of the cerebellum in neurobiology of psychiatric disorders. Neurol Clin. 2014;32:1105–15.Google Scholar
  77. 77.
    Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M, et al. Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One. 2012;7(7):e40914.PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11:777–807.Google Scholar
  79. 79.
    Piochon C, Kloth AD, Grasselli G, Titley HK, Nakayama H, Hashimoto K, et al. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat Commun. 2014;5:5586.Google Scholar
  80. 80.
    Reith RM, McKenna J, Wu H, Hashmi SS, Cho SH, Dash PK, et al. Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiol Dis. 2013;51:93–103.Google Scholar
  81. 81.
    Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012;488:647–51.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of NeuroscienceUniversity of Turin and National Institute of NeuroscienceTurinItaly

Personalised recommendations