The Cerebellum

, Volume 14, Issue 3, pp 360–363 | Cite as

Climbing Fiber Receptive Fields—Organizational and Functional Aspects and Relationship to Limb Coordination

  • Henrik Jörntell
  • Fredrik Bengtsson


Climbing fiber receptive fields are a physiological marker that have proven useful to delineate the details of the olivocerebellar circuitry. They have also proven useful as a point of reference to delineate the organization of other parts of the cerebellar circuitry. But what does the location of the climbing fiber receptive field imply and what is its relation to the presumed role of the cerebellum in coordination? Can we expect that all climbing fibers have a peripheral receptive field on the skin? In this short review, we aim to cover these issues.


Cerebellum Climbing fiber receptive fields Limb coordination 



This study was supported by grants from NINDS/NIH (R01 NS040863), The Hand Embodied (THE) (Integrated Project, EU FP7, project no. 248587), and the Swedish Research Council (VR Medicine).

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Ekerot CF, Garwicz M, Schouenborg J. The postsynaptic dorsal column pathway mediates cutaneous nociceptive information to cerebellar climbing fibres in the cat. J Physiol (London). 1991;441:275–84.CrossRefGoogle Scholar
  2. 2.
    Ekerot CF, Garwicz M, Schouenborg J. Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. J Physiol (London). 1991;441:257–74.CrossRefGoogle Scholar
  3. 3.
    Jorntell H, Bengtsson F, Geborek P, Spanne A, Terekhov AV, Hayward V. Segregation of tactile input features in neurons of the cuneate nucleus. Neuron. 2014;83:1444–52. doi: 10.1016/j.neuron.2014.07.038.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Hayward V, Terekhov AV, Wong SC, Geborek P, Bengtsson F, Jorntell H. Spatio-temporal skin strain distributions evoke low variability spike responses in cuneate neurons. J R Soc Interface. 2014;11:20131015. doi: 10.1098/rsif.2013.1015.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Jorntell H, Garwicz M, Ekerot CF. Relation between cutaneous receptive fields and muscle afferent input to climbing fibres projecting to the cerebellar C3 zone in the cat. Eur J NeuroSci. 1996;8:1769–79.CrossRefPubMedGoogle Scholar
  6. 6.
    Noble R, Riddell JS. Descending influences on the cutaneous receptive fields of postsynaptic dorsal column neurones in the cat. J Physiol. 1989;408:167–83.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Oscarsson O. Termination and functional organization of the ventral spino- olivocerebellar path. J Physiol (London). 1968;196:453–78.CrossRefGoogle Scholar
  8. 8.
    Larson B, Miller S, Oscarsson O. Termination and functional organization of the dorsolateral spino- olivocerebellar path. J Physiol (London). 1969;203:611–40.CrossRefGoogle Scholar
  9. 9.
    Oscarsson O, Sjolund B. The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp Brain Res. 1977;28:469–86.PubMedGoogle Scholar
  10. 10.
    Oscarsson O, Sjolund B. The ventral spino-olivocerebellar system in the cat. III. Functional characteristics of the five paths. Exp Brain Res. 1977;28:505–20.PubMedGoogle Scholar
  11. 11.
    Ekerot CF, Larson B. The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp Brain Res. 1979;36:201–17.CrossRefPubMedGoogle Scholar
  12. 12.
    Voogd J, Bigare F, Gerrits NM, Marani E. Structure and fiber connections of the cerebellum. Prog Clin Biol Res. 1981;59A:259–68.PubMedGoogle Scholar
  13. 13.
    Groenewegen HJ, Voogd J, Freedman SL. The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol. 1979;183:551–601.CrossRefPubMedGoogle Scholar
  14. 14.
    Ekerot CF, Larson B, Oscarsson O. Information carried by the spinocerebellar paths. Prog Brain Res. 1979;50:79–90.PubMedGoogle Scholar
  15. 15.
    Trott JR, Armstrong DM. The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. I. Projections from the intermediate region. Exp Brain Res. 1987;66:318–38.CrossRefPubMedGoogle Scholar
  16. 16.
    Ito M. The cerebellum and neural control. New York: Raven; 1984.Google Scholar
  17. 17.
    Andersson G, Oscarsson O. Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res. 1978;32:565–79.PubMedGoogle Scholar
  18. 18.
    Ekerot CF, Larson B. The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Exp Brain Res. 1979;36:219–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Ekerot CF, Larson B. Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus. Exp Brain Res. 1980;38:163–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Ekerot CF, Jorntell H, Garwicz M. Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat. Exp Brain Res. 1995;106:365–76.CrossRefPubMedGoogle Scholar
  21. 21.
    Garwicz M, Ekerot CF. Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J Physiol (London). 1994;474:245–60.CrossRefGoogle Scholar
  22. 22.
    Garwicz M, Apps R, Trott JR. Micro-organization of olivocerebellar and corticonuclear connections of the paravermal cerebellum in the cat. Eur J NeuroSci. 1996;8:2726–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Apps R, Garwicz M. Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum. Eur J NeuroSci. 2000;12:205–14.CrossRefPubMedGoogle Scholar
  24. 24.
    Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.CrossRefPubMedGoogle Scholar
  25. 25.
    Cooke JD, Larson B, Oscarsson O, Sjolund B. Organization of afferent connections to cuneocerebellar tract. Exp Brain Res. 1971;13:359–77.PubMedGoogle Scholar
  26. 26.
    Cooke JD, Larson B, Oscarsson O, Sjolund B. Origin and termination of cuneocerebellar tract. Exp Brain Res. 1971;13:339–58.PubMedGoogle Scholar
  27. 27.
    Ekerot CF. The lateral reticular nucleus in the cat. VII. Excitatory and inhibitory projection from the ipsilateral forelimb tract (iF tract). Exp Brain Res. 1990;79:120–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Bengtsson F, Jorntell H. Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs. Proc Natl Acad Sci U S A. 2009;106:2389–94. doi: 10.1073/pnas.0808428106.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Ekerot CF, Jorntell H. Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur J NeuroSci. 2001;13:1303–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Ekerot CF, Jorntell H. Parallel fiber receptive fields: a key to understanding cerebellar operation and learning. Cerebellum. 2003;2:101–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Garwicz M, Jorntell H, Ekerot CF. Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. J Physiol (London). 1998;512(Pt 1):277–93.CrossRefGoogle Scholar
  32. 32.
    Jorntell H, Ekerot CF. Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J Neurosci. 2003;23:9620–31.PubMedGoogle Scholar
  33. 33.
    Jorntell H, Ekerot CF. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron. 2002;34:797–806.CrossRefPubMedGoogle Scholar
  34. 34.
    Holtzman T, Sivam V, Zhao T, Frey O, van der Wal PD, de Rooij NF, et al. Multiple extra-synaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell-granule cell loops. J Physiol. 2011;589:3837–54. doi: 10.1113/jphysiol.2011.207167.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Xu W, Edgley SA. Climbing fibre dependent changes in Golgi cell responses to peripheral stimulation. J Physiol. 2008;586:4951–9.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Jorntell H, Ekerot CF. Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin. J Physiol (London). 1999;514(Pt 2):551–66.CrossRefGoogle Scholar
  37. 37.
    Noble R, Riddell JS. Cutaneous excitatory and inhibitory input to neurones of the postsynaptic dorsal column system in the cat. J Physiol. 1988;396:497–513.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Giesler Jr GJ, Nahin RL, Madsen AM. Postsynaptic dorsal column pathway of the rat. I. Anatomical studies. J Neurophysiol. 1984;51:260–75.PubMedGoogle Scholar
  39. 39.
    Fern R, Harrison PJ, Riddell JS. The dorsal column projection of muscle afferent fibres from the cat hindlimb. J Physiol. 1988;401:97–113.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Verburgh CA, Voogd J, Kuypers HG, Stevens HP. Propriospinal neurons with ascending collaterals to the dorsal medulla, the thalamus and the tectum: a retrograde fluorescent double-labeling study of the cervical cord of the rat. Exp Brain Res. 1990;80:577–90.CrossRefPubMedGoogle Scholar
  41. 41.
    Garwicz M, Ekerot CF, Schouenborg J. Distribution of cutaneous nociceptive and tactile climbing fibre input to sagittal zones in cat cerebellar anterior lobe. Eur J NeuroSci. 1992;4:289–95.CrossRefPubMedGoogle Scholar
  42. 42.
    Bengtsson F, Jorntell H. Specific relationship between excitatory inputs and climbing fiber receptive fields in deep cerebellar nuclear neurons. PLoS One. 2014;9:e84616. doi: 10.1371/journal.pone.0084616.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Spanne A, Jorntell H. Processing of multi-dimensional sensorimotor information in the spinal and cerebellar neuronal circuitry: a new hypothesis. PLoS Comput Biol. 2013;9:e1002979. doi: 10.1371/journal.pcbi.1002979.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Santello M, Baud-Bovy G, Jorntell H. Neural bases of hand synergies. Front Comput NeuroSci. 2013;7:23. doi: 10.3389/fncom.2013.00023.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Neural Basis for Sensorimotor Control, Department of Experimental Medical Science, BMC F10, Tornavägen 10Lund UniversityLundSweden

Personalised recommendations