The Cerebellum

, Volume 14, Issue 2, pp 165–170 | Cite as

Mesenchymal Stem Cells as a Potential Therapeutic Tool for Spinocerebellar Ataxia

  • Kazuhiro Nakamura
  • Tokue Mieda
  • Nana Suto
  • Serina Matsuura
  • Hirokazu Hirai
Review

Abstract

Spinocerebellar ataxia (SCA) is a devastating progressive neurodegenerative disorder, for which no effective treatments have been developed. However, some studies have shown that an intracerebellar or intrathecal injection of mesenchymal stem cells (MSCs) was partially effective in some genetic mouse models of cerebellar ataxia such as SCA1 and Lurcher mutant. MSCs likely exert their therapeutic efficacy by secreting innate factors to induce neuronal growth and synaptic connection and reduce apoptosis. In this review, we introduce the therapeutic influence of MSCs on each mouse model for cerebellar ataxia and the possible mechanisms underlying the action of MSCs. We also introduce studies on the safety and effectiveness of umbilical cord MSCs for patients with SCA.

Keywords

Mesenchymal stem cells Motor coordination Mouse Purkinje cells Spinocerebellar ataxia 

Notes

Conflict of Interest

There are no potential conflicts of interest in the content of this paper.

References

  1. 1.
    Orr HT. Cell biology of spinocerebellar ataxia. J Cell Biol. 2012;197:167–77.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4:2–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Taroni F, DiDonato S. Pathways to motor incoordination: the inherited ataxias. Nat Rev Neurosci. 2004;5:641–55.CrossRefPubMedGoogle Scholar
  4. 4.
    Matilla-Duenas A, Goold R, Giunti P. Clinical, genetic, molecular, and pathophysiological insights into spinocerebellar ataxia type 1. Cerebellum. 2008;7:106–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Robitaille Y, Schut L, Kish SJ. Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol. 1995;90:572–81.CrossRefPubMedGoogle Scholar
  6. 6.
    Harding AE. Classification of the hereditary ataxias and paraplegias. Lancet. 1983;1:1151–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS, et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 1995;82:937–48.CrossRefPubMedGoogle Scholar
  8. 8.
    Clark HB, Burright EN, Yunis WS, Larson S, Wilcox C, Hartman B, et al. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J Neurosci. 1997;17:7385–95.PubMedGoogle Scholar
  9. 9.
    Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med. 2004;10:816–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY. miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci. 2008;11:1137–9.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Hirai H. Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. Cerebellum. 2008;7:273–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Sawada Y, Kajiwara G, Iizuka A, Takayama K, Shuvaev AN, Koyama C, et al. High transgene expression by lentiviral vectors causes maldevelopment of Purkinje cells in vivo. Cerebellum. 2010;9:291–302.CrossRefPubMedGoogle Scholar
  13. 13.
    Torashima T, Koyama C, Iizuka A, Mitsumura K, Takayama K, Yanagi S, et al. Lentivector-mediated rescue from cerebellar ataxia in a mouse model of spinocerebellar ataxia. EMBO Rep. 2008;9:393–9.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, et al. Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci. 2009;29:13126–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol. 2010;223:229–37.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73:778–86.CrossRefPubMedGoogle Scholar
  17. 17.
    Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia. 2005;49:407–17.CrossRefPubMedGoogle Scholar
  18. 18.
    Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6:1229–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Woodbury D, Reynolds K, Black IB. Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res. 2002;69:908–17.CrossRefPubMedGoogle Scholar
  21. 21.
    Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem. 2003;89:1235–49.CrossRefPubMedGoogle Scholar
  22. 22.
    Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003;5:362–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103:1669–75.CrossRefPubMedGoogle Scholar
  24. 24.
    Paul G, Anisimov SV. The secretome of mesenchymal stem cells: potential implications for neuroregeneration. Biochimie. 2013;95:2246–56.CrossRefPubMedGoogle Scholar
  25. 25.
    Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40:415–23.CrossRefPubMedGoogle Scholar
  26. 26.
    Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997;388:769–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H. Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum. 2014;13:323–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang MJ, Sun JJ, Qian L, Liu Z, Zhang Z, Cao W, et al. Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res. 2011;1402:122–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Bonab MM, Sahraian MA, Aghsaie A, Karvigh SA, Hosseinian SM, Nikbin B, et al. Autologous mesenchymal stem cell therapy in progressive multiple sclerosis: an open label study. Curr Stem Cell Res Ther. 2012;7:407–14.CrossRefPubMedGoogle Scholar
  30. 30.
    Olson SD, Pollock K, Kambal A, Cary W, Mitchell GM, Tempkin J, et al. Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington’s disease. Mol Neurobiol. 2012;45:87–98.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A. Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets. 2009;8:110–23.CrossRefPubMedGoogle Scholar
  33. 33.
    Le Blanc K. Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy. 2006;8:559–61.CrossRefPubMedGoogle Scholar
  34. 34.
    Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5:933–46.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Meyerrose T, Olson S, Pontow S, Kalomoiris S, Jung Y, Annett G, et al. Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors. Adv Drug Deliv Rev. 2010;62:1167–74.CrossRefPubMedGoogle Scholar
  36. 36.
    Aizman I, Tate CC, McGrogan M, Case CC. Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J Neurosci Res. 2009;87:3198–206.CrossRefPubMedGoogle Scholar
  37. 37.
    Gahan PB, Stroun M. The virtosome—a novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct. 2010;28:529–38.CrossRefPubMedGoogle Scholar
  38. 38.
    Gerdes HH, Carvalho RN. Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol. 2008;20:470–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Simons M, Raposo G. Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21:575–81.CrossRefPubMedGoogle Scholar
  40. 40.
    Meyerrose TE, Roberts M, Ohlemiller KK, Vogler CA, Wirthlin L, Nolta JA, et al. Lentiviral-transduced human mesenchymal stem cells persistently express therapeutic levels of enzyme in a xenotransplantation model of human disease. Stem Cells. 2008;26:1713–22.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Olson SD, Kambal A, Pollock K, Mitchell GM, Stewart H, Kalomoiris S, et al. Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington’s disease affected neuronal cells for reduction of huntingtin. Mol Cell Neurosci. 2012;49:271–81.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, et al. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy. 2013;15:185–91.CrossRefPubMedGoogle Scholar
  43. 43.
    Dongmei H, Jing L, Mei X, Ling Z, Hongmin Y, Zhidong W, et al. Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy. 2011;13:913–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Jin JL, Liu Z, Lu ZJ, Guan DN, Wang C, Chen ZB, et al. Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res. 2013;10:11–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kazuhiro Nakamura
    • 1
  • Tokue Mieda
    • 2
  • Nana Suto
    • 1
  • Serina Matsuura
    • 1
  • Hirokazu Hirai
    • 1
  1. 1.Department of NeurophysiologyGunma University Graduate School of MedicineMaebashiJapan
  2. 2.Orthopedic SurgeryGunma University Graduate School of MedicineMaebashiJapan

Personalised recommendations