The Cerebellum

, Volume 13, Issue 6, pp 739–750 | Cite as

Impaired Hypercarbic and Hypoxic Responses from Developmental Loss of Cerebellar Purkinje Neurons: Implications for Sudden Infant Death Syndrome

  • M. Calton
  • P. Dickson
  • R. M. Harper
  • D. Goldowitz
  • G. MittlemanEmail author
Original Paper


Impaired responsivity to hypercapnia or hypoxia is commonly considered a mechanism of failure in sudden infant death syndrome (SIDS). The search for deficient brain structures mediating flawed chemosensitivity typically focuses on medullary regions; however, a network that includes Purkinje cells of the cerebellar cortex and its associated cerebellar nuclei also helps mediate responses to carbon dioxide (CO2) and oxygen (O2) challenges and assists integration of cardiovascular and respiratory interactions. Although cerebellar nuclei contributions to chemoreceptor challenges in adult models are well described, Purkinje cell roles in developing models are unclear. We used a model of developmental cerebellar Purkinje cell loss to determine if such loss influenced compensatory ventilatory responses to hypercapnic and hypoxic challenges. Twenty-four Lurcher mutant mice and wild-type controls were sequentially exposed to 2 % increases in CO2 (0–8 %) or 2 % reductions in O2 (21–13 %) over 4 min, with return to room air (21 % O2/79 % N2/0 % CO2) between each exposure. Whole body plethysmography was used to continuously monitor tidal volume (TV) and breath frequency (f). Increased f to hypercapnia was significantly lower in mutants, slower to initiate, and markedly lower in compensatory periods, except for very high (8 %) CO2 levels. The magnitude of TV changes to increasing CO2 appeared smaller in mutants but only approached significance. Smaller but significant differences emerged in response to hypoxia, with mutants showing smaller TV when initially exposed to reduced O2 and lower f following exposure to 17 % O2. Since cerebellar neuropathology appears in SIDS victims, developmental cerebellar neuropathology may contribute to SIDS vulnerability.


Cerebellum Sudden infant death Autism spectrum disorders Lurcher Respiration 



This project was made possible by NINDS grant 1R01NS063009.

Conflict of Interest



  1. 1.
    Krous H, Bechwith B, Byard R, Rognum T, Bajanowski T, Corey T. Sudden infant death syndrome. Pediatrics. 2004;114(1):234–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Health NIoC, Development H. From cells to selves: targeting Sudden Infant Death Syndrome (SIDA): a strategic plan: National Institute of Child Health and Human Development; 2001.Google Scholar
  3. 3.
    Malloy MH, MacDorman M. Changes in the classification of sudden unexpected infant deaths: United States, 1992-2001. Pediatrics. 2005;115(5):1247–53. doi: 10.1542/peds.2004-2188.PubMedCrossRefGoogle Scholar
  4. 4.
    Hauck FR, Tanabe KO. International trends in sudden infant death syndrome: stabilization of rates requires further action. Pediatrics. 2008;122(3):660–6. doi: 10.1542/peds.2007-0135.PubMedCrossRefGoogle Scholar
  5. 5.
    Trachtenberg FL, Haas EA, Kinney HC, Stanley C, Krous HF. Risk factor changes for sudden infant death syndrome after initiation of Back-to-Sleep campaign. Pediatrics. 2012;129(4):630–8. doi: 10.1542/peds.2011-1419.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Moon RY, Horne RSC, Hauck FR. Sudden infant death syndrome. Lancet. 2007;370(9598):1578–87. doi: 10.1016/s0140-6736(07)61662-6.PubMedCrossRefGoogle Scholar
  7. 7.
    Guntheroth WG, Spiers PS. The triple risk hypotheses in sudden infant death syndrome. Pediatrics. 2002;110(5):e64. doi: 10.1542/peds.110.5.e64.PubMedCrossRefGoogle Scholar
  8. 8.
    Bergman AB, Beckwith JB, Ray CG. Sudden infant death syndrome: proceedings of the second international conference on causes of sudden death in infants [Seattle, Washington, 1969]: University of Washington Press; 1970.Google Scholar
  9. 9.
    Sherwood L. Human physiology from cells to systems. 3rd ed. Belmont: Wadsworth Pub. Co.; 1997. p. 753.Google Scholar
  10. 10.
    Hilaire G, Dutschmann M. Foreword: respiratory rhythmogenesis. Respir Physiol Neurobiol. 2009;168(1–2):1–3. doi: 10.1016/j.resp.2009.06.017.PubMedCrossRefGoogle Scholar
  11. 11.
    Spyer KM, Gourine AV. Chemosensory pathways in the brainstem controlling cardiorespiratory activity. Philos Trans R Soc Lond B Biol Sci. 2009;364(1529):2603–10. doi: 10.1098/rstb.2009.0082.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Alheid GF, McCrimmon DR. Anatomy and function in the respiratory network. Encyclopedia of neuroscience: Springer; 2009. pp. 110-22Google Scholar
  13. 13.
    Onimaru H, Ikeda K, Kawakami K. Phox2b, RTN/pFRG neurons and respiratory rhythmogenesis. Respir Physiol Neurobiol. 2009;168(1–2):13–8. doi: 10.1016/j.resp.2009.03.007.PubMedCrossRefGoogle Scholar
  14. 14.
    McCrimmon DR, Alheid GF. Capra, eupnea, dyspnea, apnea: respiratory rhythms and the pre-Botzinger complex in the goat. J Appl Physiol. 2004;97(5):1618–9. doi: 10.1152/japplphysiol.00627.2004.PubMedCrossRefGoogle Scholar
  15. 15.
    Harper R. The cerebellum and respiratory control. Cerebellum. 2002;1(1):1.PubMedCrossRefGoogle Scholar
  16. 16.
    Xu F, Frazier DT. Modulation of respiratory motor output by cerebellar deep nuclei in the rat. J Appl Physiol. 2000;89(3):996–1004.PubMedGoogle Scholar
  17. 17.
    Xu F, Owen J, Frazier DT. Hypoxic respiratory responses attenuated by ablation of the cerebellum or fastigial nuclei. J Appl Physiol. 1995;79(4):1181–9.PubMedGoogle Scholar
  18. 18.
    Xu F, Frazier DT. Role of the cerebellar deep nuclei in respiratory modulation. Cerebellum. 2002;1(1):35–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Lu L, Cao Y, Tokita K, Heck DH, Boughter Jr JD. Medial cerebellar nuclear projections and activity patterns link cerebellar output to orofacial and respiratory behavior. Front Neural Circ. 2013;7:56. doi: 10.3389/fncir.2013.00056.Google Scholar
  20. 20.
    Harper RM, Kinney HC. Potential mechanisms of failure in the sudden infant death syndrome. Curr Pediatr Rev. 2010;6(1):39–47. doi: 10.2174/157339610791317214.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kinney HC, Thach BT. The sudden infant death syndrome. N Engl J Med. 2009;361(8):795–805.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Haouzi P. Initiating inspiration outside the medulla does produce eupneic breathing. J Appl Physiol. 2011;110(3):854–6. doi: 10.1152/japplphysiol.00833.2010.PubMedCrossRefGoogle Scholar
  23. 23.
    Harper RM, Richard CA, Henderson LA, Macey PM, Macey KE. Structural mechanisms underlying autonomic reactions in pediatric arousal. Sleep Med. 2002;3:S53–S6.PubMedCrossRefGoogle Scholar
  24. 24.
    Filiano J, Kinney H. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Neonatology. 1994;65(3–4):194–7.CrossRefGoogle Scholar
  25. 25.
    Beckwith JB. Defining the sudden infant death syndrome. Arch Pediatr Adolesc Med. 2003;157(3):286–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology. 2010;35(1):147–68. doi: 10.1038/npp.2009.115.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, et al. A structural MRI study of human brain development from birth to 2 years. J Neurosci. 2008;28(47):12176–82. doi: 10.1523/JNEUROSCI.3479-08.2008.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Dekaban AS, Sadowsky D. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol. 1978;4(4):345–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Cruz-Sanchez FF, Lucena J, Ascaso C, Tolosa E, Quintó L, Rossi ML. Cerebellar cortex delayed maturation in sudden infant death syndrome. J Neuropathol Exp Neurol. 1997;56(4):340–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Horne RS, Parslow PM, Harding R. Postnatal development of ventilatory and arousal responses to hypoxia in human infants. Respir Physiol Neurobiol. 2005;149(1):257–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Fifer WP, Greene M, Hurtado A, Myers MM. Cardiorespiratory responses to bidirectional tilts in infants. Early Hum Dev. 1999;55(3):265–79.PubMedCrossRefGoogle Scholar
  32. 32.
    Yiallourou SR, Walker AM, Horne RS. Prone sleeping impairs circulatory control during sleep in healthy term infants: implications for SIDS. Sleep. 2008;31(8):1139.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Matturri L, Ottaviani G, Lavezzi AM. Maternal smoking and sudden infant death syndrome: epidemiological study related to pathology. Virchows Arch. 2006;449(6):697–706.PubMedCrossRefGoogle Scholar
  34. 34.
    Caddy K, Biscoe T. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B Biol Sci. 1979:167-201Google Scholar
  35. 35.
    Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in δ2 glutamate receptor gene. Nature. 1997;388(6644):769–73.PubMedCrossRefGoogle Scholar
  36. 36.
    Harvey R, Napper R. Quantitative studies on the mammalian cerebellum. Prog Neurobiol. 1991;36(6):437–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Napper R, Harvey R. Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J Comp Neurol. 1988;274(2):168–77.PubMedCrossRefGoogle Scholar
  38. 38.
    Frappell P, Lanthier C, Baudinette R, Mortola J. Metabolism and ventilation in acute hypoxia: a comparative analysis in small mammalian species. Am J Physiol Regul Integr Comp Physiol. 1992;262(6):R1040–R6.Google Scholar
  39. 39.
    Tankersley CG, Fitzgerald RS, Kleeberger SR. Differential control of ventilation among inbred strains of mice. Am J Physiol Regul Integr Comp Physiol. 1994;267(5):R1371–R7.Google Scholar
  40. 40.
    Moosavi SH, Golestanian E, Binks AP, Lansing RW, Brown R, Banzett RB. Hypoxic and hypercapnic drives to breathe generate equivalent levels of air hunger in humans. J Appl Physiol. 2003;94(1):141–54.PubMedGoogle Scholar
  41. 41.
    Fong AY. Postnatal changes in the cardiorespiratory response and ability to autoresuscitate from hypoxic and hypothermic exposure in mammals. Respir Physiol Neurobiol. 2010;174(1–2):146–55. doi: 10.1016/j.resp.2010.08.012.PubMedCrossRefGoogle Scholar
  42. 42.
    Teppema LJ, Dahan A. The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev. 2010;90(2):675–754.PubMedCrossRefGoogle Scholar
  43. 43.
    Tankersley CG, Elston RC, Schnell AH. Genetic determinants of acute hypoxic ventilation: patterns of inheritance in mice. J Appl Physiol. 2000;88(6):2310–8.PubMedGoogle Scholar
  44. 44.
    Chai S, Gillombardo CB, Donovan L, Strohl KP. Morphological differences of the carotid body among C57/BL6 (B6), A/J, and CSS B6A1 mouse strains. Respir Physiol Neurobiol. 2011;177(3):265–72. doi: 10.1016/j.resp.2011.04.021.PubMedCrossRefGoogle Scholar
  45. 45.
    Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70(6):473–507. doi: 10.1016/s0301-0082(03)00114-x.PubMedCrossRefGoogle Scholar
  46. 46.
    Xu F, Zhou T, Frazier DT. Purkinje cell degeneration elevates eupneic and hypercapnic ventilation in rats. Cerebellum. 2004;3(3):133–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Tolbert D, Ewald M, Gutting J, La Regina M. Spatial and temporal pattern of Purkinje cell degeneration in shaker mutant rats with hereditary cerebellar ataxia. J Comp Neurol. 1995;355(4):490–507.PubMedCrossRefGoogle Scholar
  48. 48.
    Hartmann N, Martrette JM, Westphal A. Influence of the Lurcher mutation on myosin heavy chain expression in skeletal and cardiac muscles. J Cell Biochem. 2001;81(S36):222–31.CrossRefGoogle Scholar
  49. 49.
    Hernandez JP, Xu F, Frazier DT. Medial vestibular nucleus mediates the cardiorespiratory responses to fastigial nuclear activation and hypercapnia. J Appl Physiol. 2004;97(3):835–42.PubMedCrossRefGoogle Scholar
  50. 50.
    Martino P, Davis S, Opansky C, Krause K, Bonis J, Pan L, et al. The cerebellar fastigial nucleus contributes to CO2-H+ ventilatory sensitivity in awake goats. Respir Physiol Neurobiol. 2007;157(2):242–51.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Mai JK, Paxinos G. The human nervous system: Academic Press; 2011.Google Scholar
  52. 52.
    Heckroth JA. Quantitative morphological analysis of the cerebellar nuclei in normal and Lurcher mutant mice. I. Morphology and cell number. J Comp Neurol. 1994;343(1):173–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum's role in movement and cognition. Cerebellum. 2014;13(1):151–77.PubMedCrossRefGoogle Scholar
  54. 54.
    Kiessling MC, Büttner A, Butti C, Müller-Starck J, Milz S, Hof PR, et al. Intact numbers of cerebellar Purkinje and granule cells in sudden infant death syndrome: a stereologic analysis and critical review of neuropathologic evidence. J Neuropathol Exp Neurol. 2013;72(9):861–70.PubMedCrossRefGoogle Scholar
  55. 55.
    Oehmichen M, Wullen B, Zilles K, Saternus K-S. Cytological investigations on the cerebellar cortex of sudden infant death victims. Acta Neuropathol. 1989;78(4):404–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Kaur C, Sivakumar V, Zou Z, Ling E-A. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain. Brain Struct Funct. 2014;219(1):151–70.PubMedCrossRefGoogle Scholar
  57. 57.
    Yue X, Mehmet H, Penrice J, Cooper C, Cady E, Wyatt J, et al. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia–ischaemia. Neuropathol Appl Neurobiol. 1997;23(1):16–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Welsh JP, Yuen G, Placantonakis DG, Vu TQ, Haiss F, O'Hearn E, et al. Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol. 2001;89:331–59.Google Scholar
  59. 59.
    Kijsirichareanchai K, Limsuwat C, Mankongpaisarnrung C, Nantsupawat N, Nugent K. Chiari syndrome and respiratory failure: a literature review. J Intensive Care Med. 2013. doi: 10.1177/0885066613485213.PubMedGoogle Scholar
  60. 60.
    Maria BL, Boltshauser E, Palmer SC, Tran TX. Clinical features and revised diagnostic criteria in Joubert syndrome. J Child Neurol. 1999;14(9):583–90. doi: 10.1177/088307389901400906.PubMedCrossRefGoogle Scholar
  61. 61.
    Parsons LM, Egan G, Liotti M, Brannan S, Denton D, Shade R, et al. Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proc Natl Acad Sci U S A. 2001;98(4):2041–6.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Peiffer C, Poline J-B, Thivard L, Aubier M, SAMSON Y. Neural substrates for the perception of acutely induced dyspnea. Am J Respir Crit Care Med. 2001;163(4):951–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Evans KC, Banzett RB, Adams L, McKay L, Frackowiak RS, Corfield DR. Bold fMRI identifies limbic, paralimbic, and cerebellar activation during air hunger. J Neurophysiol. 2002;88(3):1500–11.PubMedGoogle Scholar
  64. 64.
    Moruzzi G. Paleocerebellar inhibition of vasomotor and respiratory carotid sinus reflexes. J Neurophysiol. 1940;3:20–32.Google Scholar
  65. 65.
    Kumar R, Macey PM, Woo MA, Alger JR, Harper RM. Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome. Pediatr Res. 2008;64(3):275–80.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Sabaratnam M. Pathological and neuropathological findings in two males with fragile‐X syndrome. J Intellect Disabil Res. 2000;44(1):81–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Fryns JP, Moerman P, Gilis F, D'Espallier L, Berghe HVD. Suggestively increased rate of infant death in children of fra (X) positive mothers. Am J Med Genet. 1988;30(12):73–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Limperopoulos C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ. Injury to the premature cerebellum: outcome is related to remote cortical development. Cereb Cortex. 2012:bhs354.Google Scholar
  69. 69.
    Bolduc ME, Du Plessis AJ, Sullivan N, Khwaja OS, Zhang X, Barnes K, et al. Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child Neurol. 2011;53(5):409–16.PubMedCrossRefGoogle Scholar
  70. 70.
    Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ. Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. J Neurosci Res. 2009;87(10):2245–54.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    DiCicco-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, et al. The developmental neurobiology of autism spectrum disorder. J Neurosci. 2006;26(26):6897–906.PubMedCrossRefGoogle Scholar
  72. 72.
    Palmen SJ, van Engeland H, Hof PR, Schmitz C. Neuropathological findings in autism. Brain. 2004;127(Pt 12):2572–83. doi: 10.1093/brain/awh287.PubMedCrossRefGoogle Scholar
  73. 73.
    Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol. 1997;7(2):269–78.PubMedCrossRefGoogle Scholar
  74. 74.
    Courchesne E, Saitoh O, Yeung-Courchesne R, Press G, Lincoln A, Haas R, et al. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. AJR Am J Roentgenol. 1994;162(1):123–30.PubMedCrossRefGoogle Scholar
  75. 75.
    Courchesne E, Yeung-Courchesne R, Hesselink J, Jernigan T. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318(21):1349–54.PubMedCrossRefGoogle Scholar
  76. 76.
    Bauman M, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology. 1985;35(6):866.PubMedCrossRefGoogle Scholar
  77. 77.
    Ishikawa T, Zhu BL, Li DR, Zhao D, Michiue T, Maeda H. An autopsy case of an infant with Joubert syndrome who died unexpectedly and a review of the literature. Forensic Sci Int. 2008;179(2–3):e67–73. doi: 10.1016/j.forsciint.2008.06.003.PubMedCrossRefGoogle Scholar
  78. 78.
    Lioy DT, Wu WW, Bissonnette JM. Autonomic dysfunction with mutations in the gene that encodes methyl-CpG-binding protein 2: insights into Rett syndrome. Auton Neurosci. 2011;161(1):55–62.PubMedCrossRefGoogle Scholar
  79. 79.
    Taddeucci G, Bonuccelli A, Mantellassi I, Orsini A, Tarantino E. Pitt-Hopkins syndrome: report of a case with a TCF4 gene mutation. Ital J Pediatr. 2010;36(1):12.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Miano S, Bruni O, Elia M, Musumeci SA, Verrillo E, Ferri R. Sleep breathing and periodic leg movement pattern in Angelman syndrome: a polysomnographic study. Clin Neurophysiol. 2005;116(11):2685–92.PubMedGoogle Scholar
  81. 81.
    Gilmore RL, Falace P, Kanga J, Baumann R. Sleep-disordered breathing in Möbius syndrome. J Child Neurol. 1991;6(1):73–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Schulte F, Kaiser H, Engelbart S, Bell E, Castell R, Lenard H. Sleep patterns in hyperphenylalaninemia: a lesson on serotonin to be learned from phenylketonuria. Pediatr Res. 1973;7(6):588–99.PubMedCrossRefGoogle Scholar
  83. 83.
    Kornguth S, Gilbert‐Barness E, Langer E, Hegstrand L. Golgi‐Kopsch silver study of the brain of a patient with untreated phenylketonuria, seizures, and cortical blindness. Am J Med Genet. 1992;44(4):443–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Yachnis AT, Rorke LB. Cerebellar and brainstem development: an overview in relation to Joubert syndrome. J Child Neurol. 1999;14(9):570–3.PubMedCrossRefGoogle Scholar
  85. 85.
    Jay V, Becker LE, Chan F, Perry TL. Puppet‐like syndrome of Angelman: a pathologic and neurochemical study. Neurology. 1991;41(3):416.PubMedCrossRefGoogle Scholar
  86. 86.
    Murakami JW, Courchesne E, Haas R, Press G, Yeung-Courchesne R. Cerebellar and cerebral abnormalities in Rett syndrome: a quantitative MR analysis. AJR Am J Roentgenol. 1992;159(1):177–83.PubMedCrossRefGoogle Scholar
  87. 87.
    Oldfors A, Sourander P, Armstrong DL, Percy AK, Witt-Engerström I, Hagberg BA. Rett syndrome: cerebellar pathology. Pediatr Neurol. 1990;6(5):310–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Lengyel D, Zaunbauer W, Keller E, Gottlob I. Mobius syndrome: MRI findings in three cases. J Pediatr Ophthalmol Strabismus. 1999;37(5):305–8.Google Scholar
  89. 89.
    Nardelli E, Vio M, Ghersini L, Rizzuto N. Möbius-like syndrome due to multiple cerebral abnormalities including hypoplasia of the descending tracts. J Neurol. 1982;227(1):11–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Calton
    • 1
  • P. Dickson
    • 2
  • R. M. Harper
    • 3
  • D. Goldowitz
    • 4
  • G. Mittleman
    • 5
    Email author
  1. 1.Department of PsychologyThe University of MemphisMemphisUSA
  2. 2.The Jackson LaboratoryBar HarborUSA
  3. 3.David Geffen School of MedicineUCLA NeurobiologyLos AngelesUSA
  4. 4.Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
  5. 5.Department of Psychological ScienceBall State UniversityMuncieUSA

Personalised recommendations