The Cerebellum

, Volume 13, Issue 5, pp 616–622 | Cite as

The Association of RAB18 Gene Polymorphism (rs3765133) with Cerebellar Volume in Healthy Adults

  • Chih-Ya Cheng
  • Albert C. Yang
  • Chu-Chung Huang
  • Mu-En Liu
  • Ying-Jay Liou
  • Jaw-Ching Wu
  • Shih-Jen Tsai
  • Ching-Po Lin
  • Chen-Jee Hong
Original Paper


Genetic factors are responsible for the development of the human brain. Certain genetic factors are known to increase the risk of common brain disorders and affect the brain structure. Therefore, even in healthy people, these factors have a role in the development of specific brain regions. Loss-of-function mutations in the RAB18 gene (RAB18) cause Warburg Micro syndrome, which is associated with reduced brain size and deformed brain structures. In this study, we hypothesized that the RAB18 variant might influence regional brain volumes in healthy people. The study participants comprised 246 normal volunteers between 21 and 59 years of age (mean age of 37.8 ± 12.0 years; 115 men, 131 women). Magnetic resonance imaging (MRI) and genotypes of RAB18 rs3765133 were examined for each participant. The differences in regional brain volumes between T homozygotes and A-allele carriers were tested using voxel-based morphometry. The results showed that RAB18 rs3765133 T homozygote group exhibited larger gray matter (GM) volume in the left middle temporal and inferior frontal gyrus of the cerebrum than the A-allele carriers. An opposite effect was observed in both the posterior lobes and right tonsil of the cerebellum, in which the GM volume of RAB18 rs3765133 T homozygotes was smaller than that of the A-allele carriers (all P FWE < 0.05). Our findings suggest that RAB18 rs3765133 polymorphism affects the deve-lopment of specific brain regions, particularly the cerebellum, in healthy people.


RAB18 Volumetry Polymorphism Cerebellum Magnetic resonance imaging 



This work was supported by the grants of Taiwan National Science Council (NSC 102-2314-B-075-005-MY3); Taipei Veterans General Hospital (V103E9-004 and V102C-173); and the Ministry of Education Taiwan, Aim for the Top University Plan.

Conflict of Interest

No competing financial interests exist.


  1. 1.
    Westbury CF, Zatorre RJ, Evans AC. Quantifying variability in the planum temporale: a probability map. Cereb Cortex. 1999;9(4):392–405.PubMedCrossRefGoogle Scholar
  2. 2.
    Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K. Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable? Neuroimage. 2000;11(1):66–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Geyer S, Schormann T, Mohlberg H, Zilles K. Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space. Neuroimage. 2000;11 (6 Pt 1):684–96.Google Scholar
  4. 4.
    Carmelli D, DeCarli C, Swan GE, Jack LM, Reed T, Wolf PA, et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke. 1998;29(6):1177–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Pfefferbaum A, Sullivan EV, Swan GE, Carmelli D. Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiol Aging. 2000;1:63–74.CrossRefGoogle Scholar
  6. 6.
    Bartley AJ, Jones DW, Weinberger DR. Genetic variability of human brain size and cortical gyral patterns. Brain. 1997;120(Pt 2):257–69.PubMedCrossRefGoogle Scholar
  7. 7.
    Pennington BF, Filipek PA, Lefly D, Chhabildas N, Kennedy DN, Simon JH, et al. A twin MRI study of size variations in human brain. J Cogn Neurosci. 2000;12(1):223–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Reveley AM, Reveley MA, Chitkara B, Clifford C. The genetic basis of cerebral ventricular volume. Psychiatry Res. 1984;13(3):261–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009;19(11):2728–35.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Woods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet. 2005;76(5):717–28.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Bem D, Yoshimura S, Nunes-Bastos R, Bond FC, Kurian MA, Rahman F, et al. Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet. 2011;88(4):499–507.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Warburg M, Sjo O, Fledelius HC, Pedersen SA. Autosomal recessive microcephaly, microcornea, congenital cataract, mental retardation, optic atrophy, and hypogenitalism. Micro syndrome Am J Dis Child. 1993;147(12):1309–12.CrossRefGoogle Scholar
  13. 13.
    Aligianis IA, Johnson CA, Gissen P, Chen D, Hampshire D, Hoffmann K, et al. Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nat Genet. 2005;37(3):221–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Abdel-Salam GM, Hassan NA, Kayed HF, Aligianis IA. Phenotypic variability in Micro syndrome: report of new cases. Genet Couns. 2007;18(4):423–35.PubMedGoogle Scholar
  15. 15.
    Morris-Rosendahl DJ, Segel R, Born AP, Conrad C, Loeys B, Brooks SS, et al. New RAB3GAP1 mutations in patients with Warburg Micro Syndrome from different ethnic backgrounds and a possible founder effect in the Danish. Eur J Hum Genet. 2010;18(10):1100–6.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Handley MT, Morris-Rosendahl DJ, Brown S, Macdonald F, Hardy C, Bem D, et al. Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome. Hum Mutat. 2013;34(5):686–96.PubMedCrossRefGoogle Scholar
  17. 17.
    Novick P, Zerial M. The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol. 1997;9(4):496–504.PubMedCrossRefGoogle Scholar
  18. 18.
    Lutcke A, Parton RG, Murphy C, Olkkonen VM, Dupree P, Valencia A, et al. Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. J Cell Sci. 1994;107(Pt 12):3437–48.PubMedGoogle Scholar
  19. 19.
    Yu H, Leaf DS, Moore HP. Gene cloning and characterization of a GTP-binding Rab protein from mouse pituitary AtT-20 cells. Gene. 1993;132(2):273–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci. 2005;118(Pt 12):2601–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem. 2005;280(51):42325–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Martin S, Parton RG. Characterization of Rab18, a lipid droplet-associated small GTPase. Methods Enzymol. 2008;438:109–29.PubMedCrossRefGoogle Scholar
  23. 23.
    Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry. 2012;17(9):887–905.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of clinical psychiatry. 1998;59(20):22–33.PubMedGoogle Scholar
  25. 25.
    Folstein MF, Folstein SE, McHugh PR. Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician J Psychiatr Res. 1975;12(3):189–98.Google Scholar
  26. 26.
    Wechsler D. Wechsler adult intelligence scale. Third Edition ed. San Antonio: The Psychological Corporation; 1997.Google Scholar
  27. 27.
    Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.PubMedCrossRefGoogle Scholar
  28. 28.
    Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Frontiers in systems neuroscience. 2010;4:13.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Ashburner J, Friston KJ. Unified segmentation. NeuroImage. 2005;26(3):839–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Rodriguez Criado G, Rufo M. Gomez de Terreros I. A second family with Micro syndrome Clin Dysmorphol. 1999;8(4):241–5.Google Scholar
  31. 31.
    Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F, et al. Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One. 2011;6(7):e22931.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Takase M, Ukena K, Yamazaki T, Kominami S, Tsutsui K. Pregnenolone, pregnenolone sulfate, and cytochrome P450 side-chain cleavage enzyme in the amphibian brain and their seasonal changes. Endocrinology. 1999;140(4):1936–44.PubMedGoogle Scholar
  33. 33.
    Ukena K, Usui M, Kohchi C, Tsutsui K. Cytochrome P450 side-chain cleavage enzyme in the cerebellar Purkinje neuron and its neonatal change in rats. Endocrinology. 1998;139(1):137–47.PubMedGoogle Scholar
  34. 34.
    Ukena K, Kohchi C, Tsutsui K. Expression and activity of 3beta-hydroxysteroid dehydrogenase/delta5-delta4-isomerase in the rat Purkinje neuron during neonatal life. Endocrinology. 1999;140(2):805–13.PubMedGoogle Scholar
  35. 35.
    Sakamoto H, Mezaki Y, Shikimi H, Ukena K, Tsutsui K. Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology. 2003;144(10):4466–77.PubMedCrossRefGoogle Scholar
  36. 36.
    Sasahara K, Shikimi H, Haraguchi S, Sakamoto H, Honda S, Harada N, et al. Mode of action and functional significance of estrogen-inducing dendritic growth, spinogenesis, and synaptogenesis in the developing Purkinje cell. J Neurosci. 2007;27(28):7408–17.PubMedCrossRefGoogle Scholar
  37. 37.
    de Leeuw R, Albuquerque RJ, Andersen AH, Carlson CR. Influence of estrogen on brain activation during stimulation with painful heat. J Oral Maxillofac Surg. 2006;64(2):158–66.PubMedCrossRefGoogle Scholar
  38. 38.
    Nassogne MC, Henrot B, Saint-Martin C, Kadhim H, Dobyns WB, Sebire G. Polymicrogyria and motor neuropathy in Micro syndrome. Neuropediatrics. 2000;31(4):218–21.PubMedCrossRefGoogle Scholar
  39. 39.
    Graham Jr JM, Hennekam R, Dobyns WB, Roeder E, Busch D. MICRO syndrome: an entity distinct from COFS syndrome. Am J Med Genet A. 2004;128A(3):235–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Ainsworth JR, Morton JE, Good P, Woods CG, George ND, Shield JP, et al. Micro syndrome in Muslim Pakistan children. Ophthalmology. 2001;108(3):491–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Derbent M, Agras PI, Gedik S, Oto S, Alehan F, Saatci U. Congenital cataract, microphthalmia, hypoplasia of corpus callosum and hypogenitalism: report and review of Micro syndrome. Am J Med Genet A. 2004;128A(3):232–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Savitz J, Solms M, Ramesar R. The molecular genetics of cognition: dopamine. COMT and BDNF Genes Brain Behav. 2006;5(4):311–28.CrossRefGoogle Scholar
  43. 43.
    Honea R, Verchinski BA, Pezawas L, Kolachana BS, Callicott JH, Mattay VS, et al. Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage. 2009;45(1):44–51.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Liu ME, Huang CC, Yang AC, Tu PC, Yeh HL, Hong CJ, et al. Effect of Bcl-2 rs956572 polymorphism on age-related gray matter volume changes. PLoS One.8 (2):e56663.Google Scholar
  45. 45.
    van der Heijden CD, Rijpkema M, Arias-Vasquez A, Hakobjan M, Scheffer H, Fernandez G, et al. Genetic variation in ataxia gene ATXN7 influences cerebellar grey matter volume in healthy adults. Cerebellum. 2013;12(3):390–5.Google Scholar
  46. 46.
    Tsai A, Huang CC, Yang AC, Liu ME, Tu PC, Hong CJ, et al. Association of BACE1 gene polymorphism with cerebellar volume but not cognitive function in normal individuals. Dement Geriatr Cogn Dis Extra. 2012;2(1):632–7.Google Scholar
  47. 47.
    Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci. 2006;7(10):818–27.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chih-Ya Cheng
    • 1
  • Albert C. Yang
    • 2
    • 5
    • 7
  • Chu-Chung Huang
    • 8
  • Mu-En Liu
    • 2
  • Ying-Jay Liou
    • 2
    • 5
  • Jaw-Ching Wu
    • 1
    • 3
    • 4
  • Shih-Jen Tsai
    • 2
    • 5
  • Ching-Po Lin
    • 8
    • 9
  • Chen-Jee Hong
    • 2
    • 5
    • 6
  1. 1.Institute of Clinical MedicineNational Yang-Ming UniversityTaipeiTaiwan
  2. 2.Department of PsychiatryTaipei Veterans General HospitalTaipeiTaiwan
  3. 3.Institute of Clinical Medicine and Cancer Research CenterTaipei Veterans General HospitalTaipeiTaiwan
  4. 4.Department of Medical Research and EducationTaipei Veterans General HospitalTaipeiTaiwan
  5. 5.Division of Psychiatry, School of MedicineNational Yang-Ming UniversityTaipeiTaiwan
  6. 6.Institute of Brain Science, School of MedicineNational Yang-Ming UniversityTaipeiTaiwan
  7. 7.Center for Dynamical Biomarkers and Translational MedicineNational Central UniversityChungliTaiwan
  8. 8.Department of Biomedical Imaging and Radiological SciencesNational Yang-Ming UniversityTaipeiTaiwan
  9. 9.Institute of Neuroscience, School of Life ScienceNational Yang-Ming UniversityTaipeiTaiwan

Personalised recommendations