Advertisement

The Cerebellum

, Volume 13, Issue 5, pp 568–579 | Cite as

Comprehensive Study of Early Features in Spinocerebellar Ataxia 2: Delineating the Prodromal Stage of the Disease

  • Luis Velázquez-PérezEmail author
  • Roberto Rodríguez-Labrada
  • Edilia M. Cruz-Rivas
  • Juan Fernández-Ruiz
  • Israel Vaca-Palomares
  • Jandy Lilia-Campins
  • Bulmaro Cisneros
  • Arnoy Peña-Acosta
  • Yaimeé Vázquez-Mojena
  • Rosalinda Diaz
  • Jonathan J. Magaña-Aguirre
  • Tania Cruz-Mariño
  • Annelié Estupiñán-Rodríguez
  • José M. Laffita-Mesa
  • Rigoberto González-Piña
  • Nalia Canales-Ochoa
  • Yanetza González-Zaldivar
Original Paper

Abstract

The prodromal phase of spinocerebellar ataxias (SCAs) has not been systematically studied. Main findings come from a homogeneous SCA type 2 (SCA2) population living in Cuba. The aim of this study was to characterize extensively the prodromal phase of SCA2 by several approaches. Thirty-seven non-ataxic SCA2 mutation carriers and its age- and sex-matched controls underwent clinical assessments, including standardized neurological exam, structured interviews and clinical scales, and looking for somatic and autonomic features, as well as a neuropsychological battery, antisaccadic recordings, and MRI scans. Main clinical somatic features of non-ataxic mutation carriers were cramps, sensory symptoms, sleep disorders, and hyperreflexia, whereas predominating autonomic symptoms were pollakiuria/nocturia, constipation, and frequent throat clearing. Cognitive impairments included early deficits of executive functions and visual memory, suggesting the involvement of cerebro-cerebellar-cerebral loops and/or reduced cholinergic basal forebrain input to the cortex. Antisaccadic task revealed impaired oculomotor inhibitory control but preserved ability for error correction. Cognitive and antisaccadic deficits were higher as carriers were closer to the estimated onset of ataxia, whereas higher Scale for the Assessment and Rating of Ataxia (SARA) scores were associated most notably to vermis atrophy. The recognition of early features of SCA2 offers novel insights into the prodromal phase and physiopathological base of the disease, allowing the assessment of its progression and the efficacy of treatments, in particular at early phases when therapeutical options should be most effective.

Keywords

SCA2 Presymptomatic Prodromal phase Biomarkers Cognitive disorders Antisaccadic 

Notes

Acknowledgments

We are grateful to the non-ataxic SCA2 mutation carriers and the control individuals, as well as to the Cuban Ministry of Public Health, the National Council of Science and Technology of Mexico (CONACyT), and the Ibero-Latin American network for Movement disorders (RIBERMOV) for their cooperation.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Funding Statement

This work was supported by the Cuban Ministry of Public Health and the CONACyT fellowship-203861 to L-VP.

Contributorship Statement

Luis Velázquez-Perez: Drafting the manuscript for content, study concept or design, acquisition of data, analysis or interpretation of data, study supervision or coordination, and final approval of the version to be published.

Roberto Rodríguez-Labrada: Study concept or design, drafting the manuscript for content, acquisition of data, analysis or interpretation of data, study supervision or coordination, and final approval of the version to be published.

Edilia M. Cruz Rivas: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Juan Fernandez-Ruiz: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Jandy Lilia-Campins: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Bulmaro Cisneros: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Israel Vaca-Palomares: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Arnoy Peña-Acosta: Acquisition of data and revising the manuscript for content.

Yaimeé Vazquez-Mojena: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Rosalinda Diaz: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Jonathan J Magaña-Aguirre: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Tania Cruz-Mariño: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Annelié Estupiñan-Rodríguez: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

José M. Laffita-Mesa: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Rigoberto González-Piña: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Nalia Canales-Ochoa: Analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

Yanetza Gonzalez-Zaldivar: Acquisition of data, analysis or interpretation of data, revising the manuscript for content, and final approval of the version to be published.

References

  1. 1.
    Velázquez-Pérez L, Rodríguez-Labrada R, García-Rodríguez JC, Almaguer-Mederos LE, Cruz-Mariño T, Laffita-Mesa JM. A comprehensive review of spinocerebellar ataxia type 2 in cuba. Cerebellum. 2011;10:184–98.PubMedCrossRefGoogle Scholar
  2. 2.
    Velazquez-Perez L, Cruz GS, Santos Falcon N, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett. 2009;454(2):157–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Orozco-Diaz G, Nodarse-Fleites A, Cordoves-Sagaz R, Auburger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology. 1990;40:1369–75.PubMedCrossRefGoogle Scholar
  4. 4.
    Jacobi H, Bauer P, Giunti P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology. 2011;77:1035–41.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Schmitz-Hubsch T, Coudert M, Bauer P, et al. Spinocerebellar ataxia type 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology. 2008;71:982–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Cruz-Mariño T, Velázquez-Pérez L, Gonzalez-Zaldivar Y, et al. The Cuban program for predictive testing of SCA2: 11 years and 768 individuals to learn from. Clin Genet. 2013;83:518–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Velazquez Perez L, Sanchez Cruz G, Canales Ochoa N, et al. Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. J Neurol Sci. 2007;263:158–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Velázquez-Pérez L, Díaz R, Pérez-González R, et al. Motor decline in presymptomatic spinocerebellar ataxia type 2 gene carriers. PLoS ONE. 2009;4(4):5398–402.CrossRefGoogle Scholar
  9. 9.
    Velázquez-Perez L, Rodriguez-Labrada R, Canales-Ochoa N, et al. Progression markers of spinocerebellar ataxia 2. A twenty years neurophysiological follow up study. J Neurol Sci. 2010;290:22–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Rodriguez-Labrada R, Velazquez-Pérez L, Canales-Ochoa N, et al. Subtle rapid eye movement sleep abnormalities in presymptomatic spinocerebellar ataxia type 2 gene carriers. Mov Disord. 2011;26:347–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Velázquez-Pérez L, Seifried C, Abele M, et al. Saccade velocity is reduced in presymptomatic spinocerebellar ataxia type 2. Clin Neurophysiol. 2009;120(3):632–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, et al. Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. Lancet Neurol. 2014;13(5):482–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Globas C, du Montcel ST, Baliko L, et al. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord. 2008;23(15):2232–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Jacobi H, Reetz K, Tezenas du Montcel S, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 2013;12(7):650–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Almaguer-Mederos LE, Falcón NS, Almira YR, et al. Estimation of the age at onset in spinocerebellar ataxia type 2 Cuban patients by survival analysis. Clin Genet. 2010;78(2):169–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Denny-Brown D, Dawson DM, Tyler HR. Handbook of neurological examination and case recording. 3rd ed. Cambridge: Harvard University Press; 1982.Google Scholar
  17. 17.
    Schmitz-Hubsch T, du Montcel ST, Baliko L, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66(11):1717–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov Disord. 2004;11(19):1306–12.CrossRefGoogle Scholar
  19. 19.
    Torralva T, Roca M, Gleichegerrcht E, Lopez P, Manes F. INECO Frontal Screening (IFS): A brief, sensitive, and specific tool to assess executive functions in dementia. J Int Neuropsychol Soc. 2009;1–10.Google Scholar
  20. 20.
    Spreen O, Strauss E. A compendium of neuropsychological tests: administration norms, and commentary. New York: Oxford University Press; 1991.Google Scholar
  21. 21.
    Spreen O, Benton AL. Neurosensory center comprehensive examination for aphasia (NCCA). Victoria: University of Victoria, Neuropsychology Laboratory; 1969.Google Scholar
  22. 22.
    Channon S, Daum I, Polkey CE. The effect of categorization on verbal memory after temporal lobectomy. Neuropsychologia. 1989;27:777–85.PubMedCrossRefGoogle Scholar
  23. 23.
    Robbins TW, James M, Owen AM, et al. Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia. 1994;5(5):266–81.PubMedGoogle Scholar
  24. 24.
    Egerhazi A, Berecz R, Bartok E, Degrell I. Automated Neuropsychological Test Battery (CANTAB) in mild cognitive impairment and in Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31:746–51.CrossRefGoogle Scholar
  25. 25.
    Evdokimidis I, Smyrnis N, Constantinidis TS, et al. The antisaccade task in a sample of 2006 young men. I. Normal population characteristics. Exp Brain Res. 2002;147(1):45–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC. MRI atlas of the human cerebellum. San Diego: Academic Press; 2000.Google Scholar
  27. 27.
    Kanai K, Kuwabara S. Motor nerve hyperexcitability and muscle cramps in machado-joseph disease. Arch Neurol. 2009;66(1):139.PubMedCrossRefGoogle Scholar
  28. 28.
    Estrada R, Galarraga J, Orozco G, et al. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies characterize it as an olivo-ponto-cerebellar atrophy (OPCA) plus. Acta Neuropathol. 1999;97:306–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Purves D, Augustine GJ, Fitzpatrick D, et al. Upper motor neuron control of the brainstem and spinal cord. In: Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd ed. Sunderland: Sinauer Associates; 2001.Google Scholar
  30. 30.
    Hoche F, Balikó L, den Dunnen W, et al. Spinocerebellar ataxia type 2 (sca2): identification of early brain degeneration in one monozygous twin in the initial disease stage. Cerebellum. 2011;10(2):245–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Inagaki A, Iida A, Matsubara M, Inagaki H. Positron emission tomography and magnetic resonance imaging in spinocerebellar ataxia type 2: a study of symptomatic and asymptomatic individuals. Eur J Neurol. 2005;12(9):725–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Pradhan C, Yashavantha BS, Pal PK, et al. Spinocerebellar ataxias type 1, 2 and 3: a study of heart rate variability. Acta Neurol Scand. 2008;117:337–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Sánchez-Cruz G, Velázquez-Pérez L, Gómez-Peña L, et al. Manifestaciones disautonómicas en pacientes con ataxia espinocerebelosa tipo 2 cubana. Rev Neurol. 2001;33:428–33.PubMedGoogle Scholar
  34. 34.
    Montes-Brown J, Sánchez-Cruz G, García AM, et al. Heart rate variability in type 2 spinocerebellar ataxia. Acta Neurol Scand. 2010;122(5):329–35.PubMedGoogle Scholar
  35. 35.
    Montes-Brown J, Machado A, Estevez M, et al. Autonomic dysfunction in presymptomatic spinocerebellar ataxia type-2. Acta Neurol Scand. 2012;125(1):24–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Steers WD. Pathophysiology of overactive bladder and urge urinary incontinence. Rev Urol. 2002;4 suppl 4:S7–18.PubMedCentralPubMedGoogle Scholar
  37. 37.
    de Groat WC, Kawatani M. Reorganization of sympathetic preganglionic connections in cat bladder ganglia following parasympathetic denervation. J Physiol. 1989;409:431–49.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Sundin J, Dahlstrom A, Norlen L, et al. The sympathetic innervation and adrenoreceptor function on the human lower urinary tract in the normal state and after parasympathetic denervation. Investig Urol. 1977;14:322–8.Google Scholar
  39. 39.
    Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9(6):453–66.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Drake MJ, Fowler CJ, Griffiths D, et al. Neural control of the lower urinary and gastrointestinal tracts: supraspinal CNS mechanisms. Neurourol Urodyn. 2010;29(1):119–27.PubMedCrossRefGoogle Scholar
  41. 41.
    Travagli RA, Hermann GE, Browning KN, et al. Brainstem circuits regulating gastric function. Annu Rev Physiol. 2006;68:279–305.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Gierga K, Bürk K, Bauer M, et al. Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2). Acta Neuropathol. 2005;109(6):617–31.PubMedCrossRefGoogle Scholar
  43. 43.
    Rüb U, Brunt ER, Petrasch-Parwez E, et al. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol. 2006;32(6):635–49.PubMedCrossRefGoogle Scholar
  44. 44.
    Medrano-Montero J, Velázquez-Pérez L, Canales-Ochoa N, et al. Electroneurography of the cranial nerves in spinocerebellar ataxia type 2. Rev Neurol. 2009;49(5):278–9.PubMedGoogle Scholar
  45. 45.
    Barak O, Tsodyks M. Working models of working memory. Curr Opin Neurobiol. 2014;25C:20–4.CrossRefGoogle Scholar
  46. 46.
    Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex. 2011;47:81–100.PubMedCrossRefGoogle Scholar
  47. 47.
    Monk CS, Zhuang J, Curtis WJ, et al. Human hippocampal activation in the delayed matching- and nonmatching-to-sample memory tasks: an event-related functional MRI approach. Behav Neurosci. 2002;116(4):716–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Rüb U, Farrag K, Seidel K, et al. Involvement of the cholinergic basal forebrain nuclei in Spinocerebellar ataxia type 2 (SCA2). Neuropathol Appl Neurobiol. 2013;39(6):634–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Hutton SB, Ettinger U. The antisaccade task as a research tool in psychopathology: a critical review. Psychophysiology. 2006;43:302–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Rodríguez-Labrada R, Velazquez-Perez L. Eye movement abnormalities in spinocerebellar ataxias. In: Gazulla J, editor. Spinocerebellar ataxias. Rijeka: Intech; 2012. p. 59–76.Google Scholar
  51. 51.
    Ford KA, Goltz HC, Brown MR, et al. Neural processes associated with antisaccade task performance investigated with event-related FMRI. J Neurophysiol. 2005;94(1):429–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Lerche S, Berg D. The significance of identifying prodromal Parkinson’s disease. Focus Park Dis. 2014;24(1):33–7.Google Scholar
  53. 53.
    Postuma RB, Lang AE, Gagnon JF, et al. How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behavior disorder. Brain. 2012;135:1860–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Luis Velázquez-Pérez
    • 1
    Email author
  • Roberto Rodríguez-Labrada
    • 1
  • Edilia M. Cruz-Rivas
    • 2
  • Juan Fernández-Ruiz
    • 3
  • Israel Vaca-Palomares
    • 3
  • Jandy Lilia-Campins
    • 2
  • Bulmaro Cisneros
    • 4
  • Arnoy Peña-Acosta
    • 1
  • Yaimeé Vázquez-Mojena
    • 1
  • Rosalinda Diaz
    • 3
  • Jonathan J. Magaña-Aguirre
    • 5
  • Tania Cruz-Mariño
    • 1
  • Annelié Estupiñán-Rodríguez
    • 1
  • José M. Laffita-Mesa
    • 1
  • Rigoberto González-Piña
    • 6
  • Nalia Canales-Ochoa
    • 1
  • Yanetza González-Zaldivar
    • 1
  1. 1.Center for the Research and Rehabilitation of Hereditary AtaxiasHolguínCuba
  2. 2.Clinical-Surgical Hospital “Lucía Iñiguez”HolguínCuba
  3. 3.Neuropsychology Laboratory, Physiology Department, Medicine SchoolUNAMMexico CityMexico
  4. 4.Department of Genetics and Molecular BiologyCINVESTAV-IPNMexico CityMexico
  5. 5.Laboratory of Genomic Medicine, Department of GeneticsINRMexico CityMexico
  6. 6.Department of Brain PlasticityNational Rehabilitation Institute (INR)Mexico CityMexico

Personalised recommendations