The Cerebellum

, Volume 13, Issue 5, pp 607–615 | Cite as

Glutamate and GABA-Metabolizing Enzymes in Post-mortem Cerebellum in Alzheimer’s Disease: Phosphate-Activated Glutaminase and Glutamic Acid Decarboxylase

  • G. Sh. Burbaeva
  • I. S. Boksha
  • E. B. Tereshkina
  • O. K. Savushkina
  • T. A. Prokhorova
  • E. A. Vorobyeva
Original Paper


Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer’s disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.


Phosphate-activated glutaminase Glutamic acid decarboxylase GABA metabolism Glutamate metabolism Alzheimer’s disease Autopsied cerebellum 



Alzheimer’s disease


Apolipoprotein E


Arbitrary units

Amyloid beta peptide


Creatine kinase BB


Gamma-aminobutyric acid


Glutamic acid decarboxylase


Glutamic acid dehydrogenase


Glutamic acid




Glutamine synthetase-like protein


Horseradish peroxidase


Phosphate-activated glutaminase


Prefrontal cortex


Postmortem interval


  1. 1.
    Fujiwara T, Morimoto K. A compound CP-31398 suppresses excitotoxicity-induced neurodegeneration. Biochem Biophys Res Commun. 2013;440(3):359–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoey SE, Buonocore F, Cox CJ, Hammond VJ, Perkinton MS, Williams RJ. AMPA receptor activation promotes non-amyloidogenic amyloid precursor protein processing and suppresses neuronal amyloid-β production. PLoS One. 2013;8(10):e78155. doi:10.1371/journal.pone.0078155.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wang ZC, Zhao J, Li S. Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors induced by amyloid-β. Neurosci Bull. 2013;29(6):752–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Majláth Z, Toldi J, Vécsei L. The potential role of kynurenines in Alzheimer’s disease: pathomechanism and therapeutic possibilities by influencing the glutamate receptors. J Neural Transm. 2013. doi:10.1007/s00702-013-1135-5.PubMedGoogle Scholar
  5. 5.
    Jones RS, Waldman AD. 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia. Neurol Res. 2004;26(5):488–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Boksha IS. Coupling between neuronal and glial cells via glutamate metabolism in brain of healthy persons and patients with mental disorders. Biochemistry (Mosc). 2004;69(7):705–19.CrossRefGoogle Scholar
  7. 7.
    Burbaeva GS, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS. Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res. 2005;30(11):1443–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener. 2011;6:55–63.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61(11):1495–511.PubMedCrossRefGoogle Scholar
  10. 10.
    Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology. 2006;44(4):788–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A. Glutamine in the central nervous system: function and dysfunction. Front Biosci. 2007;1(12):332–43.CrossRefGoogle Scholar
  12. 12.
    Bae N, Wang Y, Li L, Rayport S, Lubec G. Network of brain protein level changes in glutaminase deficient fetal mice. J Proteomics. 2013;27(80):236–49.CrossRefGoogle Scholar
  13. 13.
    Dumanis SB, DiBattista AM, Miessau M, Moussa CE, Rebeck GW. APOE genotype affects the pre-synaptic compartment of glutamatergic nerve terminals. J Neurochem. 2013;124(1):4–14.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Vermeiren Y, Van Dam D, Aerts T, Engelborghs S, De Deyn PP. Brain region-specific monoaminergic correlates of neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimer’s Dis. 2014 Mar 31.Google Scholar
  15. 15.
    O’Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning: a critical review. J Clin Exp Neuropsychol. 2012;34(1):35–56.PubMedCrossRefGoogle Scholar
  16. 16.
    Holten AT, Gundersen V. Glutamine as a precursor for transmitter glutamate, aspartate and GABA in the cerebellum: a role for phosphate-activated glutaminase. J Neurochem. 2008;104(4):1032–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Burbaeva GS, Savushkina OK, Dmitriev AD. Brain isoforms of creatine kinase in health and mental diseases: Alzheimer’s disease and schizophrenia. Vestn Ross Akad Med Nauk. 1999;1:20–4 [Russian].PubMedGoogle Scholar
  18. 18.
    Burbaeva GSh, Savushkina OK, Boksha IS. Comparative study of creatine kinase BB decrease in brain of patients with Alzheimer’s disease and schizophrenia. In: Kekelidze T, Holtzman D, editors. Creatine kinase and brain energy metabolism. NATO Science Series, 342, Netherlands: IOS Press; 2003. p. 125–132.Google Scholar
  19. 19.
    Burbaeva GS, Turishcheva MS, Vorobyeva EB, Savushkina OK, Tereshkina EB, Boksha IS. Diversity of glutamate dehydrogenase in human brain. Prog Neuropsyhopharmacol Biol Psychiatry. 2002;26(3):427–35.CrossRefGoogle Scholar
  20. 20.
    Buddhala C, Suarez M, Modi J, Prentice H, Ma Z, Tao R, et al. Calpain cleavage of brain glutamic acid decarboxylase 65 is pathological and impairs GABA neurotransmission. PLoS One. 2012;7(3):e33002.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kaneko T, Itoh K, Shigemoto R, Mizuno N. Glutaminase-like immunoreactivity in the lower brain stem and cerebellum of the adult rat. Neuroscience. 1989;32(1):79–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Levi G, Gallo V. Glutamate as a putative transmitter in the cerebellum: stimulation by GABA of glutamic acid release from specific pools. J Neurochem. 1981;37(1):22–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Kvamme E, Roberg B, Torgner IA. Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res. 2000;25(9–10):1407–19.PubMedCrossRefGoogle Scholar
  24. 24.
    Kvamme E, Torgner IA, Roberg B. Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res. 2001;66(5):951–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Roberg B, Torgner IA, Laake J, Takumi Y, Ottersen OP, Kvamme E. Properties and submitochondrial localization of pig and rat renal phosphate-activated glutaminase. Am J Physiol Cell Physiol. 2000;279(3):C648–57.PubMedGoogle Scholar
  26. 26.
    Kvamme E, Nissen-Meyer LS, Roberg BA, Torgner IA. Novel form of phosphate activated glutaminase in cultured astrocytes and human neuroblastoma cells, PAG in brain pathology and localization in the mitochondria. Neurochem Res. 2008;33(7):1341–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Shimmura C, Suzuki K, Iwata Y, Tsuchiya KJ, Ohno K, Matsuzaki H, et al. Enzymes in the glutamate glutamine cycle in the anterior cingulate cortex in postmortem brain of subjects with autism. Mol Autism. 2013;4(1):6–13.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Akiyama H, McGeer PL, Itagaki S, McGeer EG, Kaneko T. Loss of glutaminase-positive cortical neurons in Alzheimer’s disease. Neurochem Res. 1989;14(4):353–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Haug LS, Ostvold AC, Cowburn RF, Garlind A, Winblad B, Bogdanovich N, et al. Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer’s disease cerebral cortex: selectivity of changes and possible correlation to pathological severity. Neurodegeneration. 1996;5(2):169–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Lynn BC, Wang J, Markesbery WR, Lovell MA. Quantitative changes in the mitochondrial proteome from subjects with mild cognitive impairment, early stage and late stage Alzheimer’s disease. J Alzheimers Dis. 2010;19(1):325–39.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Monnerie H, Le Roux PD. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABA ergic neurons: the role of cysteine proteases. Exp Neurol. 2008;213(1):145–53.PubMedCrossRefGoogle Scholar
  32. 32.
    Turský T, Lassánová M. Inhibition of different molecular forms of brain glutamic acid decarboxylase (GAD) with ATP. J Neurochem. 1978;30(4):903–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Erlander MG, Tobin AJ. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res. 1991;16(3):215–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Esclapez M, Tillakaratne NJK, Kaufman DL, Tobin AJ, Houser CR. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci. 1994;14(3):1834–55.PubMedGoogle Scholar
  35. 35.
    Tian N, Petersen C, Kash S, Baekkeskov S, Copenhagen D, Nicoll R. The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc Natl Acad Sci U S A. 1999;96:12911–6.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Wei J, Wu J-Y. Post-translational regulation of L-glutamic acid decarboxylase in the brain. Neurochem Res. 2008;33:1459–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Martin DL, Martin SB, Wu SJ, Espina N. Cofactor interactions and the regulation of glutamate decarboxylase activity. Neurochem Res. 1991;16(3):243–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Fenalti G, Law RH, Buckle AM, Langendorf C, Tuck K, Rosado CJ, et al. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat Struct Mol Biol. 2007;14:280–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Kaufman DL, Houser CR, Tobin A. Two forms of the aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distribution and cofactor interaction. J Neurochem. 1991;56:720–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Owens D, Kriegstein A. Is there more to GABA than synaptic inhibition? Nat Rev Neurosci. 2002;3:715–27.PubMedCrossRefGoogle Scholar
  41. 41.
    Asada H, Kawamura Y, Maruyama K. Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun. 1996;229:891–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Asada H, Kawamura Y, Maruyama K. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A. 1997;94(12):6496–9.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Schwab C, Yu S, Wong W, McGeer EG, McGeer PL. GAD65, GAD67, and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J Alzheimers Dis. 2013;33(4):1073–88.PubMedGoogle Scholar
  44. 44.
    Dirkx Jr R, Thomas A, Li L, Lernmark A, Sherwin RS, De Camilli P, et al. Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2-terminal region of the 65-kDa isoform of glutamic acid decarboxylase. J Biol Chem. 1995;270:2241–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Kanaani J, Lissin D, Kash SF, Baekkeskov S. The hydrophilic isoform of glutamate decarboxylase, GAD67, is targeted to membranes and nerve terminals independent of dimerization with the hydrophobic membrane-anchored isoform, GAD65. J Biol Chem. 1999;274(52):37200–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Mitew S, Kirkcaldie MT, Dickson TC, Vickers JC. Altered synapses and gliotransmission in Alzheimer’s disease and AD model mice. Neurobiol Aging. 2013;34(10):2341–51.PubMedCrossRefGoogle Scholar
  47. 47.
    Krantic S, Isorce N, Mechawar N, Davoli MA, Vignault E, Albuquerque M, et al. Hippocampal GABAergic neurons are susceptible to amyloid-β toxicity in vitro and are decreased in number in the Alzheimer’s disease TgCRND8 mouse model. J Alzheimers Dis. 2012;29(2):293–308.PubMedGoogle Scholar
  48. 48.
    Sjöbeck M, Englund E. Alzheimer’s disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord. 2001;12(3):211–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Bowen DM, White P, Flack RH, Smith CB, Davison AN. Brain-decarboxylase activities as indices of pathological change in senile dementia. Lancet. 1974;1(7869):1247–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Reinikainen KJ, Paljärvi L, Huuskonen M, Soininen H, Laakso M, Riekkinen PJ. A postmortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer’s disease. J Neurol Sci. 1988;84(1):101–16.PubMedCrossRefGoogle Scholar
  51. 51.
    Boissière F, Faucheux B, Duyckaerts C, Hauw JJ, Agid Y, Hirsch EC. Striatal expression of glutamic acid decarboxylase gene in Alzheimer’s disease. J Neurochem. 1988;71(2):767.CrossRefGoogle Scholar
  52. 52.
    Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci. 1977;34(2):247–65.PubMedCrossRefGoogle Scholar
  53. 53.
    Gluck MR, Thomas RG, Davis KL, Haroutunian V. Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am J Psychiatry. 2002;159(7):1165–11673.PubMedCrossRefGoogle Scholar
  54. 54.
    Yates CM, Butterworth J, Tennant MC, Gordon A. Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem. 1990;55(5):1624–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Monfort JC, Javoy-Agid F, Hauw JJ, Dubois B, Agid Y. Brain glutamate decarboxylase in Parkinson’s disease with particular reference to a premortem severity index. Brain. 1985;108(2):301–13.PubMedCrossRefGoogle Scholar
  56. 56.
    Simpson MD, Cross AJ, Slater P, Deakin JF. Loss of cortical GABA uptake sites in Alzheimer’s disease. J Neural Transm. 1988;71(3):219–26.PubMedCrossRefGoogle Scholar
  57. 57.
    Bland R, Fitzsimons H. Novel glutamic acid decarboxylase (GAD) chimera and methods of use. USA Patent US8071563 B2. 2009Google Scholar
  58. 58.
    Whitelaw BS, Robinson MB. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes. Front Endocrinol (Lausanne). 2013;4:123.Google Scholar
  59. 59.
    Bauer DE, Jackson JG, Genda EN, Montoya MM, Yudkoff M, Robinson MB. The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochem Int. 2012;61(4):566–74.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.PubMedGoogle Scholar
  61. 61.
    Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum. 2007;6(3):159–62.PubMedCrossRefGoogle Scholar
  63. 63.
    Arnsten AF, Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2012;51(4):356–67.PubMedCrossRefGoogle Scholar
  64. 64.
    Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci. 2005;30(3):178–86.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Chen J, Cohen ML, Lerner AJ, Yang Y, Herrup K. DNA damage and cell cycle event simplicate cerebellar dentate nucleus neurons as targets of Alzheimer’s disease. Mol Neurodegener. 2010;20(5):60–71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • G. Sh. Burbaeva
    • 1
  • I. S. Boksha
    • 2
  • E. B. Tereshkina
    • 1
  • O. K. Savushkina
    • 1
  • T. A. Prokhorova
    • 1
  • E. A. Vorobyeva
    • 1
  1. 1.Mental Health Research CenterRussian Academy of Medical SciencesMoscowRussia
  2. 2.Laboratory of Neurochemistry, Mental Health Research CenterRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations