Advertisement

Physiologic Changes Associated with Cerebellar Dystonia

Abstract

Dystonia is a neurologic disorder characterized by sustained involuntary muscle contractions. Lesions responsible for unilateral secondary dystonia are confined to the putamen, caudate, globus pallidus, and thalamus. Dysfunction of these structures is suspected to play a role in both primary and secondary dystonia. Recent evidence has suggested that the cerebellum may play a role in the pathophysiology of dystonia. The role of the cerebellum in ataxia, a disorder of motor incoordination is well established. How may the cerebellum contribute to two apparently very different movement disorders? This review will discuss the idea of whether in some cases, ataxia and dystonia lie in the same clinical spectrum and whether graded perturbations in cerebellar function may explain a similar causative role for the cerebellum in these two different motor disorders. The review also proposes a model for cerebellar dystonia based on the available animal models of this disorder.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2

References

  1. 1.

    Fahn S. The varied clinical expressions of dystonia. Neurol Clin. 1984;2(3):541–54.

  2. 2.

    Berardelli A et al. The pathophysiology of primary dystonia. Brain. 1998;121(Pt 7):1195–212.

  3. 3.

    Marsden CD et al. The anatomical basis of symptomatic hemidystonia. Brain. 1985;108(Pt 2):463–83.

  4. 4.

    den Dunnen WF. Neuropathological diagnostic considerations in hyperkinetic movement disorders. Front Neurol. 2013;4:7.

  5. 5.

    Furukawa Y et al. Striatal dopamine in early-onset primary torsion dystonia with the DYT1 mutation. Neurology. 2000;54(5):1193–5.

  6. 6.

    Walker RH et al. TorsinA immunoreactivity in brains of patients with DYT1 and non-DYT1 dystonia. Neurology. 2002;58(1):120–4.

  7. 7.

    Rostasy K et al. TorsinA protein and neuropathology in early onset generalized dystonia with GAG deletion. Neurobiol Dis. 2003;12(1):11–24.

  8. 8.

    McNaught KS et al. Brainstem pathology in DYT1 primary torsion dystonia. Ann Neurol. 2004;56(4):540–7.

  9. 9.

    Vitek JL et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol. 1999;46(1):22–35.

  10. 10.

    Delmaire C et al. Structural abnormalities in the cerebellum and sensorimotor circuit in writer's cramp. Neurology. 2007;69(4):376–80.

  11. 11.

    Le Ber I et al. Predominant dystonia with marked cerebellar atrophy: a rare phenotype in familial dystonia. Neurology. 2006;67(10):1769–73.

  12. 12.

    Kuoppamaki M et al. Slowly progressive cerebellar ataxia and cervical dystonia: clinical presentation of a new form of spinocerebellar ataxia? Mov Disord. 2003;18(2):200–6.

  13. 13.

    van de Warrenburg BP et al. The syndrome of (predominantly cervical) dystonia and cerebellar ataxia: new cases indicate a distinct but heterogeneous entity. J Neurol Neurosurg Psychiatry. 2007;78(7):774–5.

  14. 14.

    LeDoux MS, Brady KA. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord. 2003;18(1):60–9.

  15. 15.

    Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2–6.

  16. 16.

    Eidelberg D et al. Functional brain networks in DYT1 dystonia. Ann Neurol. 1998;44(3):303–12.

  17. 17.

    Sadnicka A et al. The cerebellum in dystonia—help or hindrance? Clin Neurophysiol. 2012;123(1):65–70.

  18. 18.

    Niethammer M et al. Hereditary dystonia as a neurodevelopmental circuit disorder: evidence from neuroimaging. Neurobiol Dis. 2011;42(2):202–9.

  19. 19.

    Argyelan M et al. Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci. 2009;29(31):9740–7.

  20. 20.

    Campbell DB, Hess EJ. L-type calcium channels contribute to the tottering mouse dystonic episodes. Mol Pharmacol. 1999;55(1):23–31.

  21. 21.

    Sprunger LK et al. Dystonia associated with mutation of the neuronal sodium channel Scn8a and identification of the modifier locus Scnm1 on mouse chromosome 3. Hum Mol Genet. 1999;8(3):471–9.

  22. 22.

    Lorden JF et al. Neuropharmacological correlates of the motor syndrome of the genetically dystonic (dt) rat. Adv Neurol. 1988;50:277–97.

  23. 23.

    Pizoli CE et al. Abnormal cerebellar signaling induces dystonia in mice. J Neurosci. 2002;22(17):7825–33.

  24. 24.

    LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp Neurol. 1993;120(2):302–10.

  25. 25.

    Raman IM, Gustafson AE, Padgett D. Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci. 2000;20(24):9004–16.

  26. 26.

    Raman IM, Bean BP. Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci. 1997;17(12):4517–26.

  27. 27.

    Ito M et al. Inhibitory control of intracerebellar nuclei by the purkinje cell axons. Exp Brain Res. 1970;10(1):64–80.

  28. 28.

    Mittmann W, Koch U, Hausser M. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J Physiol. 2005;563(Pt 2):369–78.

  29. 29.

    Dizon MJ, Khodakhah K. The role of interneurons in shaping Purkinje cell responses in the cerebellar cortex. J Neurosci. 2011;31(29):10463–73.

  30. 30.

    Thach WT. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968;31(5):785–97.

  31. 31.

    Frysinger RC et al. Cerebellar cortical activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol. 1984;51(1):32–49.

  32. 32.

    Smith AM, Bourbonnais D. Neuronal activity in cerebellar cortex related to control of prehensile force. J Neurophysiol. 1981;45(2):286–303.

  33. 33.

    Espinoza E, Smith AM. Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights. J Neurophysiol. 1990;64(3):698–714.

  34. 34.

    Wetts R, Kalaska JF, Smith AM. Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol. 1985;54(2):231–44.

  35. 35.

    Medina JF, Lisberger SG. Variation, signal, and noise in cerebellar sensory-motor processing for smooth-pursuit eye movements. J Neurosci. 2007;27(25):6832–42.

  36. 36.

    Shidara M et al. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature. 1993;365(6441):50–2.

  37. 37.

    Holdefer RN, Miller LE. Dynamic correspondence between Purkinje cell discharge and forelimb muscle activity during reaching. Brain Res. 2009;1295:67–75.

  38. 38.

    Thach WT. Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J Neurophysiol. 1978;41(3):654–76.

  39. 39.

    Ebner TJ, Hewitt AL, Popa LS. What features of limb movements are encoded in the discharge of cerebellar neurons? Cerebellum. 2011;10(4):683–93.

  40. 40.

    Rispal-Padel L, Cicirata F, Pons C. Cerebellar nuclear topography of simple and synergistic movements in the alert baboon (Papio papio). Exp Brain Res. 1982;47(3):365–80.

  41. 41.

    Heiney SA et al. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci. 2014;34(6):2321–30.

  42. 42.

    Witter L et al. Strength and timing of motor responses mediated by rebound firing in the cerebellar nuclei after Purkinje cell activation. Front Neural Circ. 2013;7:133.

  43. 43.

    Hoshi E et al. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.

  44. 44.

    Calderon DP et al. The neural substrates of rapid-onset dystonia-Parkinsonism. Nat Neurosci. 2011;14(3):357–65.

  45. 45.

    Hore J, Wild B, Diener HC. Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol. 1991;65(3):563–71.

  46. 46.

    Hallett M, Shahani BT, Young RR. EMG analysis of patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38(12):1163–9.

  47. 47.

    Hallett M et al. Physiological analysis of simple rapid movements in patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1991;54(2):124–33.

  48. 48.

    Bastian AJ, Zackowski KM, Thach WT. Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol. 2000;83(5):3019–30.

  49. 49.

    Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.

  50. 50.

    Breakefield XO et al. The pathophysiological basis of dystonias. Nat Rev Neurosci. 2008;9(3):222–34.

  51. 51.

    Hallett M. Pathophysiology of dystonia. J Neural Transm Suppl. 2006;70:485–8.

  52. 52.

    Lehericy S et al. The anatomical basis of dystonia: current view using neuroimaging. Mov Disord. 2013;28(7):944–57.

  53. 53.

    Guehl D et al. Primate models of dystonia. Prog Neurobiol. 2009;87(2):118–31.

  54. 54.

    van der Kamp W et al. Rapid elbow movements in patients with torsion dystonia. J Neurol Neurosurg Psychiatry. 1989;52(9):1043–9.

  55. 55.

    Berardelli A et al. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996;119(Pt 2):661–74.

  56. 56.

    Ozelius LJ et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17(1):40–8.

  57. 57.

    MacKinnon CD et al. Corticospinal excitability accompanying ballistic wrist movements in primary dystonia. Mov Disord. 2004;19(3):273–84.

  58. 58.

    Carrea RM, Mettler FA. Physiologic consequences following extensive removals of the cerebellar cortex and deep cerebellar nuclei and effect of secondary cerebral ablations in the primate. J Comp Neurol. 1947;87(3):169–288.

  59. 59.

    Dow RS, Moruzzi G. The physiology and pathology of the cerebellum. Minneapolis: University of Minnesota Press; 1958. 675 p.

  60. 60.

    Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94.

  61. 61.

    Walter JT et al. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci. 2006;9(3):389–97.

  62. 62.

    Shakkottai VG et al. Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J Clin Invest. 2004;113(4):582–90.

  63. 63.

    Shakkottai VG et al. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci. 2011;31(36):13002–14.

  64. 64.

    Kasumu AW et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol. 2012;19(10):1340–53.

  65. 65.

    Person AL, Raman IM. Synchrony and neural coding in cerebellar circuits. Front Neural Circ. 2012;6:97.

  66. 66.

    Gauck V, Jaeger D. The control of rate and timing of spikes in the deep cerebellar nuclei by inhibition. J Neurosci. 2000;20(8):3006–16.

  67. 67.

    De Zeeuw CI et al. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci. 2011;12(6):327–44.

  68. 68.

    Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2012;481(7382):502–5.

  69. 69.

    LeDoux MS, Hurst DC, Lorden JF. Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience. 1998;86(2):533–45.

  70. 70.

    Luna-Cancalon K et al. Alterations in cerebellar physiology are associated with a stiff-legged gait in Atcay mice. Neurobiol Dis. 2014;67C:140–8.

  71. 71.

    McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol. 2001;63:815–46.

  72. 72.

    Chen G et al. Low-frequency oscillations in the cerebellar cortex of the tottering mouse. J Neurophysiol. 2009;101(1):234–45.

Download references

Acknowledgements

The author would like to thank the Dystonia Medical Research Foundation and the National Institutes of Health (K08NS072158 and R01NS085054) for their support.

Conflict of Interest

The author has no relevant conflicts of interest to declare.

Author information

Correspondence to Vikram G. Shakkottai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shakkottai, V.G. Physiologic Changes Associated with Cerebellar Dystonia. Cerebellum 13, 637–644 (2014). https://doi.org/10.1007/s12311-014-0572-5

Download citation

Keywords

  • Cerebellum
  • Dystonia
  • Ataxia
  • EMG
  • DCN
  • Cerebellar nuclei
  • Purkinje neuron