The Cerebellum

, Volume 13, Issue 4, pp 521–530 | Cite as

Radiological Imaging in Ataxia Telangiectasia: a Review

  • Ishani Sahama
  • Kate Sinclair
  • Kerstin Pannek
  • Martin Lavin
  • Stephen RoseEmail author


The human genetic disorder ataxia telangiectasia (A-T) is characterised by neurodegeneration, immunodeficiency, radiosensitivity, cell cycle checkpoint defects, genomic instability and cancer predisposition. Progressive cerebellar ataxia represents the most debilitating aspect of this disorder. At present, there is no therapy available to cure or prevent the progressive symptoms of A-T. While it is possible to alleviate some of the symptoms associated with immunodeficiency and deficient lung function, neither the predisposition to cancer nor the progressive neurodegeneration can be prevented. Significant effort has focused on improving our understanding of various clinical, genetic and immunological aspects of A-T; however, little attention has been directed towards identifying altered brain structure and function using MRI. To date, most imaging studies have reported radiological anomalies in A-T. This review outlines the clinical and biological features of A-T along with known radiological imaging anomalies. In addition, we briefly discuss the advent of high-resolution MRI in conjunction with diffusion-weighted imaging, which enables improved investigation of the microstructural tissue environment, giving insight into the loss in integrity of motor networks due to abnormal neurodevelopmental or progressive neurodegenerative processes. Such imaging approaches have yet to be applied in the study of A-T and could provide important new information regarding the relationship between mutation of the ataxia telangiectasia mutated (ATM) gene and the integrity of motor circuitry.


Ataxia telangiectasia Cerebellum Magnetic resonance imaging Diffusion magnetic resonance imaging 



Ataxia telangiectasia


Diffusion magnetic resonance imaging


Diffusion tensor imaging


Grey matter


High angular resolution diffusion imaging


Magnetic resonance imaging


White matter



We wish to acknowledge the A-T Children’s Project (USA) and BrAshA-T (Australia) for their funding support, Prof Roslyn Boyd of the Queensland Cerebral Palsy and Rehabilitation Research Centre for the provision of control participants in our study, Ms Kate Munro of the Neurosciences Department in the Queensland Royal Children’s Hospital for providing clinical support and Aiman Al Najjar and Anita Burns of the University of Queensland Centre of Advanced Imaging (CAI) for their assistance in acquisition of the MRI data.


  1. 1.
    Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet. 1986;39(5):573–83.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Woods CG, Bundey SE, Taylor AM. Unusual features in the inheritance of ataxia telangiectasia. Hum Genet. 1990;84(6):555–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Louis-Bar M. Confin Neurol. 1941;4(32).Google Scholar
  4. 4.
    Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature. 1988;336(6199):577–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Boder E, Sedgwick RP. Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics. 1958;21(4):526–54.PubMedGoogle Scholar
  7. 7.
    Dunn HG, Meuwissen H, Livingstone CS, Pump KK. Ataxia-telangiectasia. Can Med Assoc J. 1964;91:1106–18.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Waldmann TA, McIntire KR. Serum-alpha-fetoprotein levels in patients with ataxia-telangiectasia. Lancet. 1972;2(7787):1112–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Watters D, Khanna KK, Beamish H, Birrell G, Spring K, Kedar P, et al. Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene. 1997;14(16):1911–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Beamish H, Williams R, Chen P, Lavin MF. Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation. J Biol Chem. 1996;271(34):20486–93.PubMedCrossRefGoogle Scholar
  11. 11.
    Cornforth MN, Bedford JS. On the nature of a defect in cells from individuals with ataxia-telangiectasia. Science. 1985;227(4694):1589–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Jaspers NG, de Wit J, Regulski MR, Bootsma D. Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents. Cancer Res. 1982;42(1):335–41.PubMedGoogle Scholar
  13. 13.
    Jaspers NG, Gatti RA, Baan C, Linssen PC, Bootsma D. Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients. Cytogenet Cell Genet. 1988;49(4):259–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Pandita TK, Hittelman WN. The contribution of DNA and chromosome repair deficiencies to the radiosensitivity of ataxia-telangiectasia. Radiat Res. 1992;131(2):214–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Higurashi M, Conen PE. In vitro chromosomal radiosensitivity in “chromosomal breakage syndromes”. Cancer. 1973;32(2):380–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Paterson MC, Smith BP, Lohman PH, Anderson AK, Fishman L. Defective excision repair of gamma-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts. Nature. 1976;260(5550):444–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Lehman AR, Stevens S. The production and repair of double strand breaks in cells from normal humans and from patients with ataxia telangiectasia. Biochim Biophys Acta. 1977;474(1):49–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Cox R, Hosking GP, Wilson J. Ataxia telangiectasia. Evaluation of radiosensitivity in cultured skin fibroblasts as a diagnostic test. Arch Dis Child. 1978;53(5):386–90.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Taylor AM, Harnden DG, Arlett CF, Harcourt SA, Lehmann AR, Stevens S, et al. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature. 1975;258(5534):427–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Taylor AM, Rosney CM, Campbell JB. Unusual sensitivity of ataxia telangiectasia cells to bleomycin. Cancer Res. 1979;39(3):1046–50.PubMedGoogle Scholar
  21. 21.
    Vincent Jr RA, Sheridan 3rd RB, Huang PC. DNA strained breakage repair in ataxia telangiectasia fibroblast-like cells. Mutat Res. 1975;33(2–3):357–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Houldsworth J, Lavin MF. Effect of ionizing radiation on DNA synthesis in ataxia telangiectasia cells. Nucleic Acids Res. 1980;8(16):3709–20.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Foray N, Priestley A, Alsbeih G, Badie C, Capulas EP, Arlett CF, et al. Hypersensitivity of ataxia telangiectasia fibroblasts to ionizing radiation is associated with a repair deficiency of DNA double-strand breaks. Int J Radiat Biol. 1997;72(3):271–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Perlman S, Becker-Catania S, Gatti RA. Ataxia-telangiectasia: diagnosis and treatment. Semin Pediatr Neurol. 2003;10(3):173–82.PubMedCrossRefGoogle Scholar
  25. 25.
    Chun HH, Gatti RA. Ataxia-telangiectasia, an evolving phenotype. DNA Repair. 2004;3(8–9):1187–96.PubMedCrossRefGoogle Scholar
  26. 26.
    Huang Y, Yang L, Wang JC, Yang F, Xiao Y, Xia RJ, et al. Twelve novel ATM mutations identified in Chinese ataxia telangiectasia patients. Neruomol Med. 2013;15(3):536–40.CrossRefGoogle Scholar
  27. 27.
    de Graaf AS, de Jong G, Kleijer WJ. An early-onset recessive cerebellar disorder with distal amyotrophy and, in two patients, gross myoclonia: a probable ataxia telangiectasia variant. Clin Neurol Neurosurg. 1995;97(1):1–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Watanabe M, Sugai Y, Concannon P, Koenig M, Schmitt M, Sato M, et al. Familial spinocerebellar ataxia with cerebellar atrophy, peripheral neuropathy, and elevated level of serum creatine kinase, gamma-globulin, and alpha-fetoprotein. Ann Neurol. 1998;44(2):265–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Verhagen MM, Martin JJ, van Deuren M, Ceuterick-de Groote C, Weemaes CM, Kremer BH, et al. Neuropathology in classical and variant ataxia-telangiectasia. Neuropathol Off J Jpn Soc Neuropathol. 2012;32(3):234–44.CrossRefGoogle Scholar
  30. 30.
    De Leon GA, Grover WD, Huff DS. Neuropathologic changes in ataxia-telangiectasia. Neurology. 1976;26(10):947–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Agamanolis DP, Greenstein JI. Ataxia-telangiectasia. Report of a case with Lewy bodies and vascular abnormalities within cerebral tissue. J Neuropathol Exp Neurol. 1979;38(5):475–89.PubMedCrossRefGoogle Scholar
  32. 32.
    Amromin GD, Boder E, Teplitz R. Ataxia-telangiectasia with a 32 year survival. A clinicopathological report. J Neuropathol Exp Neurol. 1979;38(6):621–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Monaco S, Nardelli E, Moretto G, Cavallaro T, Rizzuto N. Cytoskeletal pathology in ataxia-telangiectasia. Clin Neuropathol. 1988;7(1):44–6.PubMedGoogle Scholar
  34. 34.
    Terplan KL, Krauss RF. Histopathologic brain changes in association with ataxia-telangiectasia. Neurology. 1969;19(5):446–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Sourander P, Bonnevier JO, Olsson Y. A case of ataxia-telangiectasia with lesions in the spinal cord. Acta Neurol Scand. 1966;42(3):354–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Stritch SJ. Pathological findings in three cases of ataxia-telangiectasia. J Neurol Neurosurg Pyschiatry. 1966;29:489–99.CrossRefGoogle Scholar
  37. 37.
    Solitare GB, Lopez VF. Louis-bar's syndrome (ataxia-telangiectasia). Neuropathologic observations. Neurology. 1967;17(1):23–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Solitare GB. Louis-Bar's syndrome (ataxia-telangiectasia). Anatomic considerations with emphasis on neuropathologic observations. Neurology. 1968;18(12):1180–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Aguilar MJ, Kamoshita S, Landing BH, Boder E, Sedgwick RP. Pathological observations in ataxia-telangiectasia. A report of five cases. J Neuropathol Exp Neurol. 1968;27(4):659–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Itatsu Y, Uno Y. An autopsy case of ataxia-telangiectasia. Acta Pathologica Japonica. 1969;19(2):229–39.PubMedGoogle Scholar
  41. 41.
    Gotoff SP, Amirmokri E, Liebner EJ. Ataxia telangiectasia. Neoplasia, untoward response to x-irradiation, and tuberous sclerosis. Am J Dis Child. 1967;114(6):617–25.PubMedCrossRefGoogle Scholar
  42. 42.
    Paula-Barbosa MM, Ruela C, Tavares MA, Pontes C, Saraiva A, Cruz C. Cerebellar cortex ultrastructure in ataxia-telangiectasia. Ann Neurol. 1983;13(3):297–302.PubMedCrossRefGoogle Scholar
  43. 43.
    Larnaout A, Belal S, Ben Hamida C, Ben Hamida M, Hentati F. Atypical ataxia telangiectasia with early childhood lower motor neuron degeneration: a clinicopathological observation in three siblings. J Neurol. 1998;245(4):231–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Goodman WN, Cooper WC, Kessler GB, Fischer MS, Gardner MB. Ataxia-telangiectasia. A report of two cases in siblings presenting a picture of progressive spinal muscular atrophy. Bull Los Angel Neurol Soc. 1969;34(1):1–22.Google Scholar
  45. 45.
    Soares HD, Morgan JI, McKinnon PJ. Atm expression patterns suggest a contribution from the peripheral nervous system to the phenotype of ataxia-telangiectasia. Neuroscience. 1998;86(4):1045–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Quick KL, Dugan LL. Superoxide stress identifies neurons at risk in a model of ataxia-telangiectasia. Ann Neurol. 2001;49(5):627–35.PubMedCrossRefGoogle Scholar
  47. 47.
    Oka A, Takashima S. Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci Lett. 1998;252(3):195–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Gorodetsky E, Calkins S, Ahn J, Brooks PJ. ATM, the Mre11/Rad50/Nbs1 complex, and topoisomerase I are concentrated in the nucleus of Purkinje neurons in the juvenile human brain. DNA Repair. 2007;6(11):1698–707.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Yi M, Rosin MP, Anderson CK. Response of fibroblast cultures from ataxia-telangiectasia patients to oxidative stress. Cancer Lett. 1990;54(1–2):43–50.PubMedCrossRefGoogle Scholar
  50. 50.
    Reichenbach J, Schubert R, Schindler D, Muller K, Bohles H, Zielen S. Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal. 2002;4(3):465–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Rotman G, Shiloh Y. Ataxia-telangiectasia: is ATM a sensor of oxidative damage and stress? BioEssays News Rev Mol Cell Dev Biol. 1997;19(10):911–7.CrossRefGoogle Scholar
  52. 52.
    Barlow C, Dennery PA, Shigenaga MK, Smith MA, Morrow JD, Roberts 2nd LJ, et al. Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc Natl Acad Sci U S A. 1999;96(17):9915–9.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Takao N, Li Y, Yamamoto K. Protective roles for ATM in cellular response to oxidative stress. FEBS Lett. 2000;472(1):133–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen P, Peng C, Luff J, Spring K, Watters D, Bottle S, et al. Oxidative stress is responsible for deficient survival and dendritogenesis in purkinje neurons from ataxia-telangiectasia mutated mutant mice. J Neurosci Off J Soc Neurosci. 2003;23(36):11453–60.Google Scholar
  55. 55.
    Blough NV, Zafiriou OC. Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorg Chem. 1985;24(22):3502–4.CrossRefGoogle Scholar
  56. 56.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87(4):1620–4.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Reliene R, Fischer E, Schiestl RH. Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in atm-deficient mice. Cancer Res. 2004;64(15):5148–53.PubMedCrossRefGoogle Scholar
  58. 58.
    Schubert R, Erker L, Barlow C, Yakushiji H, Larson D, Russo A, et al. Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum Mol Genet. 2004;13(16):1793–802.PubMedCrossRefGoogle Scholar
  59. 59.
    Gueven N, Luff J, Peng C, Hosokawa K, Bottle SE, Lavin MF. Dramatic extension of tumor latency and correction of neurobehavioral phenotype in Atm-mutant mice with a nitroxide antioxidant. Free Radic Biol Med. 2006;41(6):992–1000.PubMedCrossRefGoogle Scholar
  60. 60.
    Reliene R, Schiestl RH. Antioxidant N-acetyl cysteine reduces incidence and multiplicity of lymphoma in Atm deficient mice. DNA Repair. 2006;5(7):852–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Ito K, Takubo K, Arai F, Satoh H, Matsuoka S, Ohmura M, et al. Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes. J Immunol (Baltim, Md: 1950). 2007;178(1):103–10.CrossRefGoogle Scholar
  62. 62.
    Reliene R, Schiestl RH. Experimental antioxidant therapy in ataxia telangiectasia. Clin Med Oncol. 2008;2:431–6.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Reliene R, Fleming SM, Chesselet MF, Schiestl RH. Effects of antioxidants on cancer prevention and neuromotor performance in Atm deficient mice. Food Chem Toxicol Int J Published Br Ind Biol Res Assoc. 2008;46(4):1371–7.CrossRefGoogle Scholar
  64. 64.
    Mercer JR, Yu E, Figg N, Cheng KK, Prime TA, Griffin JL, et al. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/−/ApoE−/− mice. Free Radic Biol Med. 2012;52(5):841–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Fearnhead HO, Chwalinski M, Snowden RT, Ormerod MG, Cohen GM. Dexamethasone and etoposide induce apoptosis in rat thymocytes from different phases of the cell cycle. Biochem Pharmacol. 1994;48(6):1073–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Yan M, Qiang W, Liu N, Shen J, Lynn WS, Wong PK. The ataxia-telangiectasia gene product may modulate DNA turnover and control cell fate by regulating cellular redox in lymphocytes. FASEB J Off Publ Fed Am Soc Exp Biol. 2001;15(7):1132–8.Google Scholar
  67. 67.
    Yan M, Kuang X, Qiang W, Shen J, Claypool K, Lynn WS, et al. Prevention of thymic lymphoma development in Atm−/− mice by dexamethasone. Cancer Res. 2002;62(18):5153–7.PubMedGoogle Scholar
  68. 68.
    Kuang X, Yan M, Liu N, Scofield VL, Qiang W, Cahill J, et al. Control of Atm−/− thymic lymphoma cell proliferation in vitro and in vivo by dexamethasone. Cancer Chemother Pharmacol. 2005;55(3):203–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Buoni S, Zannolli R, Sorrentino L, Fois A. Betamethasone and improvement of neurological symptoms in ataxia-telangiectasia. Arch Neurol. 2006;63(10):1479–82.PubMedCrossRefGoogle Scholar
  70. 70.
    Broccoletti T, Del Giudice E, Amorosi S, Russo I, Di Bonito M, Imperati F, et al. Steroid-induced improvement of neurological signs in ataxia-telangiectasia patients. Eur J Neurol Off J Eur Fed Neurol Soc. 2008;15(3):223–8.Google Scholar
  71. 71.
    Zannolli R, Buoni S, Betti G, Salvucci S, Plebani A, Soresina A, et al. A randomized trial of oral betamethasone to reduce ataxia symptoms in ataxia telangiectasia. Mov Disord Off J Mov Disord Soc. 2012;27(10):1312–6.CrossRefGoogle Scholar
  72. 72.
    Russo I, Cosentino C, Del Giudice E, Broccoletti T, Amorosi S, Cirillo E, et al. In ataxia-teleangiectasia betamethasone response is inversely correlated to cerebellar atrophy and directly to antioxidative capacity. Eur J Neurol. 2009;16(6):755–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Broccoletti T, Del Giudice E, Cirillo E, Vigliano I, Giardino G, Ginocchio VM, et al. Efficacy of very-low-dose betamethasone on neurological symptoms in ataxia-telangiectasia. Eur J Neurol Off J Eur Fed Neurol Soc. 2011;18(4):564–70.Google Scholar
  74. 74.
    Gatti RA, Vinters HV. Cerebellar pathology in ataxia-telangiectasia: the significance of basket cells. Kroc Found Ser. 1985;19:225–32.PubMedGoogle Scholar
  75. 75.
    Gatti RA, Perlman S. A proposed bailout for A-T patients? Eur J Neurol Off J Eur Fed Neurol Soc. 2009;16(6):653–5.Google Scholar
  76. 76.
    Habas C, Cabanis EA. Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3 T. Neuroradiology. 2007;49(10):849–63.PubMedCrossRefGoogle Scholar
  77. 77.
    Yoon B, Kim JS, Lee KS, Kim BS, Chung SR, Kim YI. Early pathological changes in the cerebellum of patients with pure cerebellar syndrome demonstrated by diffusion-tensor imaging. Eur Neurol. 2006;56(3):166–71.PubMedCrossRefGoogle Scholar
  78. 78.
    Kitamura K, Nakayama K, Kosaka S, Yamada E, Shimada H, Miki T, et al. Diffusion tensor imaging of the cortico-ponto-cerebellar pathway in patients with adult-onset ataxic neurodegenerative disease. Neuroradiology. 2008;50(4):285–92.PubMedCrossRefGoogle Scholar
  79. 79.
    Ying SH, Landman BA, Chowdhury S, Sinofsky AH, Gambini A, Mori S, et al. Orthogonal diffusion-weighted MRI measures distinguish region-specific degeneration in cerebellar ataxia subtypes. J Neurol. 2009;256(11):1939–42.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Pagani E, Ginestroni A, Della Nave R, Agosta F, Salvi F, De Michele G, et al. Assessment of brain white matter fiber bundle atrophy in patients with Friedreich ataxia. Radiology. 2010;255(3):882–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Rizzo G, Tonon C, Valentino ML, Manners D, Fortuna F, Gellera C, et al. Brain diffusion-weighted imaging in Friedreich's ataxia. Mov Disord Off J Mov Disord Soc. 2011;26(4):705–12.CrossRefGoogle Scholar
  82. 82.
    Solodkin A, Peri E, Chen EE, Ben-Jacob E, Gomez CM. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. Cerebellum. 2011;10(2):218–32.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Prodi E, Grisoli M, Panzeri M, Minati L, Fattori F, Erbetta A, et al. Supratentorial and pontine MRI abnormalities characterize recessive spastic ataxia of Charlevoix-Saguenay. A comprehensive study of an Italian series. Eur J Neurol Off J Eur Fed Neurol Soc. 2013;20(1):138–46.Google Scholar
  84. 84.
    Quarantelli M, Giardino G, Prinster A, Aloj G, Carotenuto B, Cirillo E, et al. Steroid treatment in ataxia-telangiectasia induces alterations of functional magnetic resonance imaging during prono-supination task. EJPN Off J Eur Paediatr Neurol Soc. 2013;17(2):135–40.CrossRefGoogle Scholar
  85. 85.
    Scharnetzky M, Kohlschutter A, Krtsch H. Computerized tomographic findings in a case of ataxia-telangiectasia (Louis-Bar syndrome). Neuropediatrics. 1980;11(4):384–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Meshram CM, Sawhney IM, Prabhakar S, Chopra JS. Ataxia telangiectasia in identical twins: unusual features. J Neurol. 1986;233(5):304–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Wong V, Yu YL, Chan-Lui WY, Woo E, Yeung CY. Ataxia telangiectasia in Chinese children. A clinical and electrophysiological study. Clin Neurol Neurosurg. 1987;89(3):137–44.PubMedCrossRefGoogle Scholar
  88. 88.
    de Jonge J, Tijssen CC. Ataxia telangiectasia in a brother and sister at older age. Clin Neurol Neurosurg. 1988;90(3):279–81.PubMedCrossRefGoogle Scholar
  89. 89.
    Kryst T, Kozlowski P, Walecki J, Gajkowski K. Cerebellar atrophy diagnosed by computed tomography and clinical data. Acta Radiol Suppl. 1986;369:396–8.PubMedGoogle Scholar
  90. 90.
    Wick MC, Kremser C, Frischauf S, Wick G. In vivo molecular imaging of vascular stress. Cell Stress Chaperones. 2008;13(3):263–73.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Golay X, Jiang H, van Zijl PC, Mori S. High-resolution isotropic 3D diffusion tensor imaging of the human brain. Magn Reson Med. 2002;47(5):837–43.PubMedCrossRefGoogle Scholar
  92. 92.
    Pajevic S, Aldroubi A, Basser PJ. A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. J Magn Reson (San Diego, Calif: 1997). 2002;154(1):85–100.CrossRefGoogle Scholar
  93. 93.
    Dafni H, Landsman L, Schechter B, Kohen F, Neeman M. MRI and fluorescence microscopy of the acute vascular response to VEGF165: vasodilation, hyper-permeability and lymphatic uptake, followed by rapid inactivation of the growth factor. NMR Biomed. 2002;15(2):120–31.PubMedCrossRefGoogle Scholar
  94. 94.
    Demaerel P, Kendall BE, Kingsley D. Cranial CT and MRI in diseases with DNA repair defects. Neuroradiology. 1992;34(2):117–21.PubMedCrossRefGoogle Scholar
  95. 95.
    Farina L, Uggetti C, Ottolini A, Martelli A, Bergamaschi R, Sibilla L, et al. Ataxia-telangiectasia: MR and CT findings. J Comput Assist Tomogr. 1994;18(5):724–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Sardanelli F, Parodi RC, Ottonello C, Renzetti P, Saitta S, Lignana E, et al. Cranial MRI in ataxia-telangiectasia. Neuroradiology. 1995;37(1):77–82.PubMedCrossRefGoogle Scholar
  97. 97.
    Ciemins JJ, Horowitz AL. Abnormal white matter signal in ataxia telangiectasia. AJNR. 2000;21(8):1483–5.PubMedGoogle Scholar
  98. 98.
    Opeskin K, Waterston J, Nirenberg A, Hare WS. Ataxia telangiectasia with long survival. J Clin Neurosci Off J Neurosurg Soc Australas. 1998;5(4):471–3.Google Scholar
  99. 99.
    Kamiya M, Yamanouchi H, Yoshida T, Arai H, Yokoo H, Sasaki A, et al. Ataxia telangiectasia with vascular abnormalities in the brain parenchyma: report of an autopsy case and literature review. Pathol Int. 2001;51(4):271–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Huang KY, Shyur SD, Wang CY, Shen EY, Liang DC. Ataxia telangiectasia: report of two cases. J Microbiol Immunol Infect Wei Mian Yu Gan Ran Za Zhi. 2001;34(1):71–5.Google Scholar
  101. 101.
    Tavani F, Zimmerman RA, Berry GT, Sullivan K, Gatti R, Bingham P. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI. Neuroradiology. 2003;45(5):315–9.PubMedGoogle Scholar
  102. 102.
    Firat AK, Karakas HM, Firat Y, Yakinci C. Quantitative evaluation of brain involvement in ataxia telangiectasia by diffusion weighted MR imaging. Eur J Radiol. 2005;56(2):192–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Lin DD, Crawford TO, Lederman HM, Barker PB. Proton MR spectroscopic imaging in ataxia-telangiectasia. Neuropediatrics. 2006;37(4):241–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Wallis LI, Griffiths PD, Ritchie SJ, Romanowski CA, Darwent G, Wilkinson ID. Proton spectroscopy and imaging at 3 T in ataxia-telangiectasia. AJNR. 2007;28(1):79–83.PubMedGoogle Scholar
  105. 105.
    Habek M, Brinar VV, Rados M, Zadro I, Zarkovic K. Brain MRI abnormalities in ataxia-telangiectasia. Neurologist. 2008;14(3):192–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Kieslich M, Hoche F, Reichenbach J, Weidauer S, Porto L, Vlaho S, et al. Extracerebellar MRI-lesions in ataxia telangiectasia go along with deficiency of the GH/IGF-1 axis, markedly reduced body weight, high ataxia scores and advanced age. Cerebellum. 2010;9(2):190–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Al-Maawali A, Blaser S, Yoon G. Diagnostic approach to childhood-onset cerebellar atrophy: a 10-year retrospective study of 300 patients. J Child Neurol. 2012;27(9):1121–32.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Chung EO, Bodensteiner JB, Noorani PA, Schochet SS. Cerebral white-matter changes suggesting leukodystrophy in ataxia telangiectasia. J Child Neurol. 1994;9(1):31–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Lin DD, Barker PB, Lederman HM, Crawford TO. Cerebral abnormalities in adults with ataxia-telangiectasia. AJNR. 2013;35(1)119–123.Google Scholar
  110. 110.
    Menkes JH. Text of child neurology. 4th ed. Philadelphia: Lea & Febiger; 1990. pp. 170–8.Google Scholar
  111. 111.
    Sood S, Gupta A, Tsiouris AJ. Advanced magnetic resonance techniques in neuroimaging: diffusion, spectroscopy, and perfusion. Semin Roentgenol. 2010;45(2):137–46.PubMedCrossRefGoogle Scholar
  112. 112.
    Ciccarelli O, Behrens TE, Altmann DR, Orrell RW, Howard RS, Johansen-Berg H, et al. Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain. 2006;129(Pt 7):1859–71.PubMedCrossRefGoogle Scholar
  113. 113.
    Johansen-Berg H, Rushworth MF. Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci. 2009;32:75–94.PubMedCrossRefGoogle Scholar
  114. 114.
    Zalesky A, Akhlaghi H, Corben LA, Bradshaw JL, Delatycki MB, Storey E, et al. Cerebello-cerebral connectivity deficits in Friedreich ataxia. Brain Struct Funct. 2013. doi: 10.1007/s00429-013-0547-1
  115. 115.
    Nissenkorn A, Hassin-Baer S, Lerman SF, Levi YB, Tzadok M, Ben-Zeev B. Movement disorder in ataxia-telangiectasia: treatment with amantadine sulfate. J Child Neurol. 2013;28(2):155–60.PubMedCrossRefGoogle Scholar
  116. 116.
    Mizoguchi K, Yokoo H, Yoshida M, Tanaka T, Tanaka M. Amantadine increases the extracellular dopamine levels in the striatum by re-uptake inhibition and by N-methyl-D-aspartate antagonism. Brain Res. 1994;662(1–2):255–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Blanpied TA, Clarke RJ, Johnson JW. Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci Off J Soc Neurosci. 2005;25(13):3312–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ishani Sahama
    • 1
  • Kate Sinclair
    • 2
  • Kerstin Pannek
    • 3
  • Martin Lavin
    • 4
    • 5
  • Stephen Rose
    • 3
    Email author
  1. 1.School of MedicineThe University of QueenslandBrisbaneAustralia
  2. 2.Neurology, The Royal Children’s HospitalBrisbaneAustralia
  3. 3.Commonwealth Scientific and Industrial Research OrganisationCentre for Computational InformaticsBrisbaneAustralia
  4. 4.Queensland Institute of Medical ResearchRoyal Brisbane Hospital CampusBrisbaneAustralia
  5. 5.University of Queensland Centre for Clinical ResearchBrisbaneAustralia

Personalised recommendations