The Cerebellum

, Volume 13, Issue 3, pp 346–353 | Cite as

Glutamate Dysfunction Associated with Developmental Cerebellar Damage: Relevance to Autism Spectrum Disorders

  • Eric McKimm
  • Beau Corkill
  • Dan Goldowitz
  • Lorraine M. Albritton
  • Ramin Homayouni
  • Charles D. Blaha
  • Guy Mittleman
Original Paper


Neural abnormalities commonly associated with autism spectrum disorders include prefrontal cortex (PFC) dysfunction and cerebellar pathology in the form of Purkinje cell loss and cerebellar hypoplasia. It has been reported that loss of cerebellar Purkinje cells results in aberrant dopamine neurotransmission in the PFC which occurs via dysregulation of multisynaptic efferents from the cerebellum to the PFC. Using a mouse model, we investigated the possibility that developmental cerebellar Purkinje cell loss could disrupt glutamatergic cerebellar projections to the PFC that ultimately modulate DA release. We measured glutamate release evoked by local electrical stimulation using fixed-potential amperometry in combination with glutamate selective enzyme-based recording probes in urethane-anesthetized Lurcher mutant and wildtype mice. Target sites included the mediodorsal and ventrolateral thalamic nuclei, reticulotegmental nuclei, pedunculopontine nuclei, and ventral tegmental area. With the exception of the ventral tegmental area, the results indicated that in comparison to wildtype mice, evoked glutamate release was reduced in Lurcher mutants by between 9 and 72 % at all stimulated sites. These results are consistent with the notion that developmental loss of cerebellar Purkinje cells drives reductions in evoked glutamate release in cerebellar efferent pathways that ultimately influence PFC dopamine release. Possible mechanisms whereby reductions in glutamate release could occur are discussed.


Autism Cerebellum Dopamine Glutamate Fmr1 mice 



This project was made possible by NINDS grant 1R01NS063009.

Conflict of Interest

There are no conflicts of interest.


  1. 1.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders-IV-TR. 4th ed. Washington: American Psychiatric Association; 2000.Google Scholar
  2. 2.
    Ozonoff S, South M, Provencal S. Executive functions in autism: theory and practice. In: Pérez JM, GonzálezPM MC, Comí MC, et al., editors. New developments in autism: the future is today. Philadelphia: Asociación de Padres de Personas con Autismo; 2007. p. 185–213.Google Scholar
  3. 3.
    Centers for Disease Control and Prevention. Prevalence of autism spectrum disorders— Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2002. MMWR 56(No. SS-1), 12–28, 2007.Google Scholar
  4. 4.
    Bauman ML. Microscopic neuroanatomic abnormalities in autism. Pediatrics. 1991;87:791–6.PubMedGoogle Scholar
  5. 5.
    Bolduc M, Du Plessis AJ, Sullivan N, Khwaja OS, Zhang X, Barnes K, et al. Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Dev Med Child Neurol. 2011;53:409–16.PubMedGoogle Scholar
  6. 6.
    Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol. 1997;7:269–78.PubMedCrossRefGoogle Scholar
  7. 7.
    Courchesne E, Townsend J, Akshoomoff NA, Saitoh O, Yeung-Courchesne R, Lincoln AJ, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci. 1994;108:848–65.PubMedCrossRefGoogle Scholar
  8. 8.
    Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318:1349–54.PubMedCrossRefGoogle Scholar
  9. 9.
    DiCicco-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, et al. The developmental neurobiology of autism spectrum disorder. J Neurosci. 2006;26:6897–906.PubMedCrossRefGoogle Scholar
  10. 10.
    Limperopoulos C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ. Injury to the premature cerebellum: outcome is related to remote cortical development. Cereb Cortex. 2012, Nov 11.Google Scholar
  11. 11.
    Palmen SJ, van Engeland H, Hof PR, Schmitz C. Neuropathological findings in autism. Brain. 2004;127:2572–83.PubMedCrossRefGoogle Scholar
  12. 12.
    Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ. Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereologic experiment using calbindin-D28k. Cerebellum. 2008;7:406–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ. Calbindin-D28k is a more reliable marker of human Purkinje cells than standard Nissl stains: a stereological experiment. J Neurosci Methods. 2008;168:42–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;2000(123):836–44.CrossRefGoogle Scholar
  15. 15.
    Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011;306:2001–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Cohen RM. Low medial prefrontal dopaminergic activity in autistic children. Lancet. 1997;350:638.PubMedCrossRefGoogle Scholar
  17. 17.
    Caddy KW, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B Biol Sci. 1979;287:167–201.PubMedCrossRefGoogle Scholar
  18. 18.
    Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997;388:769–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Goldowitz D, Moran H, Wetts R. Mouse chimeras in the study of genetic and structural determinants of behavior. In: Goldowitz D, Wahlsten D, Wimer RE, editors. Techniques for the genetic analysis of brain and behavior: focus on the mouse. Amsterdam: Elsevier; 1992. p. 271–90.Google Scholar
  20. 20.
    Dickson PE, Rogers TD, Del Mar N, Martin LA, Heck D, Blaha CD, et al. Behavioral flexibility in a mouse model of developmental cerebellar Purkinje cell loss. Neurobiol Learn Mem. 2010;94:220–8.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Martin LA, Goldowitz D, Mittleman G. Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur J Neurosci. 2010;31:544–55.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW. Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res. 2003;146:105–19.PubMedCrossRefGoogle Scholar
  23. 23.
    Robbins TW, Arnsten AF. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci. 2009;32:267–87.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Mittleman G, Goldowitz D, Heck DH, Blaha CD. Cerebellar modulation of frontal cortex dopamine release in mice: relevance to autism and schizophrenia. Synapse. 2008;62:544–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Schwarz C, Schmitz Y. Projection from the cerebellar lateral nucleus to precerebellar nuclei in the mossy fiber pathway is glutamatergic: a study combining anterograde tracing with immunogold labeling in the rat. J Comp Neurol. 1997;381:320–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Vertes RP, Martin GF, Waltzer R. An autoradiographic analysis of ascending projections from the medullary reticular formation in the rat. Neuroscience. 1986;19:873–98.PubMedCrossRefGoogle Scholar
  27. 27.
    Oakman SA, Faris PL, Cozzari C, Hartman BK. Characterization of the extent of pontomesencephalic cholinergic neurons’ projections to the thalamus: comparison with projections to midbrain dopaminergic groups. Neuroscience. 1999;94:529–47.PubMedCrossRefGoogle Scholar
  28. 28.
    Lavoie B, Parent A. Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. Comp Neurol. 1994;344:190–209.CrossRefGoogle Scholar
  29. 29.
    Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31:236–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.PubMedGoogle Scholar
  31. 31.
    Pinto A, Jankowski M, Sesack SR. Projections from the paraventricular nucleus of the thalamus to the rat prefrontal cortex and nucleus accumbens shell: ultrastructural characteristics and spatial relationships with dopamine afferents. J Comp Neurol. 2003;459:142–55.PubMedCrossRefGoogle Scholar
  32. 32.
    Pirot S, Jay TM, Glowinski J, Thierry AM. Anatomical and electrophysiological evidence for an excitatory amino acid pathway from the thalamic mediodorsal nucleus to the prefrontal cortex in the rat. Eur J Neurosci. 1994;6:1225–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittleman G, Blaha CD. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse. 2011;65:1204–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Rogers TD, Dickson PE, McKimm E, Heck D, Goldowitz D, Blaha C, et al. Developmental cerebellar damage in two mouse models: relevance to the neuropathology of autism. Cerebellum. 2013;12:547–56.PubMedCrossRefGoogle Scholar
  35. 35.
    Agnesi F, Blaha CD, Lin J, Lee KH. Local glutamate release in the rat ventral lateral thalamus evoked by high-frequency stimulation. J Neural Eng. 2010;7:1–11.CrossRefGoogle Scholar
  36. 36.
    Agnesi F, Tye SJ, Bledsoe JM, Griessenauer CJ, Kimble CJ, Sieck GC, et al. Wireless instantaneous neurotransmitter concentration system-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring. J Neurosurg. 2009;111:701–11.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates 2nd ed. San Diego: Academic; 2001.Google Scholar
  38. 38.
    Tehovnik EJ. Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods. 1996;65:1–17.PubMedCrossRefGoogle Scholar
  39. 39.
    Yeomans JS, Maidment NT, Bunney BS. Excitability properties of medial forebrain bundle axons of A9 and A 10 dopamine cells. Brain Res. 1988;450:86–93.PubMedCrossRefGoogle Scholar
  40. 40.
    Carder RK, Hendry SH. Neuronal characterization, compartmental distribution, and activity-dependent regulation of glutamate immunoreactivity in adult monkey striate cortex. J Neurosci. 1994;14:242–62.PubMedGoogle Scholar
  41. 41.
    Arckens L, Schweigart G, Qu Y, Wouters G, Pow DV, Vandesande F, et al. Cooperative changes in GABA, glutamate and activity levels: the missing link in cortical plasticity. Eur J Neurosci. 2000;12:4222–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Andreasen NC, Paradiso S, O’Leary DS. “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry. Schizophr Bull. 1998;24:203–18.PubMedCrossRefGoogle Scholar
  43. 43.
    Kyriakopoulos M, Vyas NS, Barker GJ, Chitnis XA, Frangou S. A diffusion tensor imaging study of white matter in early onset schizophrenia. Biol Psychiatry. 2008;63:519–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, et al. Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci U S A. 2010;107:4407–11.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Magnotta VA, Adix ML, Caprahan A, Lim K, Gollub R, Andreasen NC. Investigating connectivity between the cerebellum and thalamus in schizophrenia using diffusion tensor tractography: a pilot study. Psychiatry Res. 2008;163:193–200.PubMedCrossRefGoogle Scholar
  46. 46.
    Heckroth JA. Quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. I. Morphology and cell number. J Comp Neurol. 1994;343:173–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Heckroth JA. A quantitative morphological analysis of the cerebellar nuclei in normal and lurcher mutant mice. II. Volumetric changes in cytological components. J Comp Neurol. 1994;343:183–92.PubMedCrossRefGoogle Scholar
  48. 48.
    Strazielle C, Lalonde R, Reader TA. Autoradiography of glutamate receptor binding in adult Lurcher mutant mice. J Neuropathol Exp Neurol. 2000;59:707–22.PubMedGoogle Scholar
  49. 49.
    Lee M, Schwab C, McGeer PL. Astrocytes are GABAergic cells that modulate microglial activity. Glia. 2011;59:152–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Shimmura C, Suzuki K, Iwata Y, Tsuchiya KJ, Ohno K, Matsuzaki H, et al. Enzymes in the glutamate-glutamine cycle in the anterior cingulate cortex in postmortem brain of subjects with autism. Mol Autism. 2013;4:6.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Horder J, Lavender T, Mendez MA, O’Gorman R, Daly E, Craig MC, et al. Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [1H]MRS study. Transl Psychiatry. 2013;3:e279.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Eric McKimm
    • 1
  • Beau Corkill
    • 1
  • Dan Goldowitz
    • 2
  • Lorraine M. Albritton
    • 3
  • Ramin Homayouni
    • 4
  • Charles D. Blaha
    • 1
  • Guy Mittleman
    • 1
  1. 1.Department of PsychologyThe University of MemphisMemphisUSA
  2. 2.Centre for Molecular Medicine and Therapeutics, Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
  3. 3.Microbiology, Immunology and BiochemistryThe University of Tennessee Health Science CenterMemphisUSA
  4. 4.Bioinformatics Program & Center for Translational Informatics, Department of BiologyThe University of MemphisMemphisUSA

Personalised recommendations